1000 Solved Problems in Modern Physics

(Tina Meador) #1
450 8 Nuclear Physics – II

U=


dU=

4 πρ^2
3 ε 0

∫R

0

r^4 dr=

4 πρ^2 R^5
1. 5 ε 0

=

3 z^2 e^2
20 πε 0 R

where we have substituted the value ofρ.

8.8 Choose a point at distancer(<R) from the centre of the nucleus. Letq′be the
charge within the sphere of radiusr.


Thenq′=q

(r
R

) 3

The electric field will beE=

q′
4 πε 0 r^2

=

qr
4 πε 0 R^3

The potentialV(r)=−


Edr=−

∫ qr
4 πε 0 R^3

+C

=−

qr^2
8 πε 0 R^3

+C (1)

whereCis a constant.
Atr=R, the point is just on the surface and the potential will be given by
Coulomb’s law.

V(R)=

q
4 πε 0 R

(2)

Using (2) in (1), the value ofCis determined asC=

3

2

q
4 πε 0 R

and (1) becomes

V(r)=

q
8 πε 0 R

(

3 −

r^2
R^2

)

8.3.3 Nuclear Spin and Magnetic Moment ..............


8.9 The rotational kinetic energy is given by

ER=

1

2

Iω^2 (1)

whereERis the rotational energy,Ithe rotational inertia andωis the angular
velocity
The angular momentum is given by

J=Iω (2)

Combining (1) and (2)

ER=

1

2

Free download pdf