450 8 Nuclear Physics – II
U=
∫
dU=
4 πρ^2
3 ε 0
∫R
0
r^4 dr=
4 πρ^2 R^5
1. 5 ε 0
=
3 z^2 e^2
20 πε 0 R
where we have substituted the value ofρ.
8.8 Choose a point at distancer(<R) from the centre of the nucleus. Letq′be the
charge within the sphere of radiusr.
Thenq′=q
(r
R
) 3
The electric field will beE=
q′
4 πε 0 r^2
=
qr
4 πε 0 R^3
The potentialV(r)=−
∫
Edr=−
∫ qr
4 πε 0 R^3
+C
=−
qr^2
8 πε 0 R^3
+C (1)
whereCis a constant.
Atr=R, the point is just on the surface and the potential will be given by
Coulomb’s law.
V(R)=
q
4 πε 0 R
(2)
Using (2) in (1), the value ofCis determined asC=
3
2
q
4 πε 0 R
and (1) becomes
V(r)=
q
8 πε 0 R
(
3 −
r^2
R^2
)
8.3.3 Nuclear Spin and Magnetic Moment ..............
8.9 The rotational kinetic energy is given by
ER=
1
2
Iω^2 (1)
whereERis the rotational energy,Ithe rotational inertia andωis the angular
velocity
The angular momentum is given by
J=Iω (2)
Combining (1) and (2)
ER=
1
2
Jω