464 8 Nuclear Physics – II
Eα=
QMLi
Mα+MLi
=
2. 79 × 7. 018
4. 004 + 7. 018
= 1 .78 MeV
ELi=Q−Eα=^2.^79 −^1.^78 =^1 .01 MeV
8.51 p+^27 Al→n+^27 Si+Q (1)
(^27) Si→ (^27) Al+β++ν (2)
Msi−MAl=Emax+ 2 me
where masses are atomic. In terms of nuclear masses
MSi−MAl=Emax+ 2 me= 3. 5 + 0. 51 = 4 .01 MeV
In (1),Q=mp+mAl−mn−msi
where masses are nuclear
Q=−
(
mn−mp
)
−(mSi−mAl)=− 0. 8 − 4. 01 =− 4 .81 MeV
EThreshold=|Q|
(
1 +
mp
mAl
)
= 4. 81 ×
(
1 +
1
27
)
= 5 .0MeV
8.52 (a) The threshold energy for appearance of neutron in the forward direction is
Ep(threshold)=|Q|
(
1 +
mp
mH 3
)
= 0. 764 ×
(
1 +
1
3
)
= 1 .019 MeV
(b) The threshold for the appearance of neutrons in the 90◦direction is
Ep(threshold)=
|Q|mHe
mHe−mp
= 0. 764 ×
(
3
3 − 1
)
= 1 .146 MeV
8.53d+^30 Si→^31 Si+p(1)
Q=Md+MSi^30 −MSi^31 −Mp (2)
Given
MSi 30 +Md=Mp 31 +Mn+ 5 .1(3)
MSi 31 =Mp 31 +Me+ 1. 51 (4)
Subtract (4) from (3)
MSi^30 +Md−MSi^31 =Mn−Me+^3.^59 (5)
Further
Mn=Mp+Me+ 0 + 0. 78 (6)
Add (5) and (6)
MSi 30 +Md−MSi 31 −Mp=Q= 3. 59 + 0. 78 = 4 .37 MeV