470 8 Nuclear Physics – II
Ignoring the statistical factor g, at resonance
σt= 7 , 000 × 10 −^24 cm^2 =
λ^2
π
Γs
Γ
(4)
Butλ=
0. 286
√
E
=
0. 286
√
0. 178
= 0. 678 A ̊= 0. 678 × 10 −^8 cm
From (3) and (4) we get
Γs/Γ= 47. 815 × 10 −^5 (5)
Inserting (5) and the value ofσtin (3), we find
σs= 3 .35b
8.71Γ=Γn+Γγ+Γα= 4. 2 + 1. 3 + 2. 7 = 8 .2eV
σ(n,γ)=
λ^2
4 π
ΓγΓn
(E−ER)^2 +Γ
2
4
λ=
0. 286
√
70
= 3. 418 × 10 −^10 cm
ER=60 eV,E=70 eV,Γγ= 1 .3 eV andΓn= 4 .2eV
Ignoring the g - factor, we findσ(n,γ)=1215 b.
σ(n,α)=σ(n,γ).
Γα
Γγ
= 1215 ×
2. 7
1. 3
=2523 b
8.72 Breit–Wigner’s formula is
σtotal=
πλ-^2 ΓsΓg
(E−ER)^2 +Γ
2
4
(1)
For spin zero target nucleus, the statistical factorg = 1. At resonance
energy (1) reduces to
Γs=
πΓσtotal
λ^2
(2)
λ=
0. 286
√
E
A ̊=^0 √.^286
250
= 0. 018 A ̊= 1. 8 × 10 −^10 cm
Substituting,σtotal= 1300 × 10 −^24 cm^2 ,Γ=20 eV andλ= 1. 8 × 10 −^10 cm
in (2), we findΓs= 2 .5eV.
8.3.13 DirectReactions...................................
8.73 Q=[(md+mN)−(mα+mC)]×^931 .44 MeV
=[( 2. 014102 + 14. 003074 )−( 14. 002603 + 12. 0 )]× 931. 44
= 13 .57 MeV