1.3 Solutions 35
(b) If the field is solenoidal, then,∇.rF(r)= 0
∂(xF(r))
∂x+
∂(yF(r))
∂y+
∂(zF(r))
∂z= 0
F+x∂F
∂x+F+y∂F
∂y+F+z∂F
∂z= 0
3 F(r)+x∂F
∂rx
r+y∂F
∂ry
r+z∂F
∂rz
r= 0
3 F(r)+(
∂F
∂r)(
x^2 +y^2 +z^2
r)
= 0
But (x^2 +y^2 +z^2 )=r^2 , therefore,∂∂Fr=−^3 Fr(r)
Integrating, lnF=−3lnr+lnCwhereC=constant
lnF=−lnr^3 +lnC=lnC
r^3
ThereforeF=C/r^3. Thus, the field isA=r
r^3(inverse square law)1.6 x=t,y=t^2 ,z=t^3
Therefore,∫ y=x^2 ,z=x^3 ,dy= 2 xdx,dz= 3 x^2 dxcA.dr=∫
(yˆi+xzˆj+xyzkˆ).(ˆidx+ˆjdy+kˆdz)=
∫ 1
0x^2 dx+ 2∫ 1
0x^5 dx+ 3∫ 1
0x^8 dx=
1
3
+
1
3
+
1
3
= 1
1.7 The two curvesy =x^2 andy^2 = 8 xintersect at (0, 0) and (2, 4). Let us
traverse the closed curve in the clockwise direction, Fig. 1.6.
∫cA.dr=∫
c[(x+y)ˆi+(x−y)ˆj].(iˆdx+ˆjdy)=
∫
c[(x+y)dx+(x−y)dy]=
∫ 0
2[(x+x^2 )dx+(x−x^2 )2xdx] (alongy=x^2 )Fig. 1.6Line integral for a
closed curve