1000 Solved Problems in Modern Physics

(Tina Meador) #1

568 10 Particle Physics – II


10.30 In the initial stateT(K)=^1 / 2 andT(p)=^1 / 2 , so thatI =0or1.Inthe
first two reactionsI=2, 1 or 0; so that these reactions can proceed through
I=1 or 0. In the third reactionT(Λ)=0 andT(π^0 )=1sothatI=1 only.
Since the resonance does not go through, the conclusion is that the resonance
hasT=0.


10.31 K−+p→Σ++π− (1)


K−+p→Σ^0 +π^0 (2)
K−+p→Σ−+π+ (3)
K−+n→Σ−+π^0 (4)
K−+n→Σ^0 +π− (5)
The initialK−+psystem of two particles ofT=^1 / 2 hasI 3 =0 and
consists equally ofI=0 andI=1 state. The finalΣ+πstate will be

|ψ〉=

1


2

(a 0 |φ( 0 , 0 )〉+a 1 |φ( 1 , 0 )〉)

ForI 1 =I 2 =1, referring to the C.G. Coefficients (Table 3.3) we can write

|φ( 0 , 0 )〉=

1


3

(∣

∣Σ+π−




∣Σ^0 π^0


+


∣Σ−π+

〉)

|φ( 1 , 0 )〉=

1


2

(∣∣

Σ−π+




∣Σ+π−〉)

|ψ〉=

1


2

[(

a 0

3


a 1

2

)∣

∣Σ+π−〉−√a^0
3


∣Σ^0 π^0 〉+

(

a 0

3

+

a 1

2

)∣

∣Σ−π+〉

]


(

Σ+π−

)

:

(

Σ^0 π^0

)

:

(

Σ−π+

)

=

1

2

(

a 0

3


a 1

2

) 2

:

a^20
6

:

1

2

(

a 0

3

+

a 1

2

) 2

The reactions ofK−with n go throughI=1 only. SinceI 3 =−1 and the
finalΣπstate isa 1 |ψ( 1 ,− 1 )〉=√a^12

[∣∣

Σ−π^0




∣Σ^0 π−〉]

(
Σ−π^0

)

:

(

Σ^0 π−

)

=

a 12
2

:

a 12
2
If K−is incident with equal frequency on p and n, then

Σ−+Σ+=

1

2

(

a 0

3


a 1

2

) 2

+

1

2

(

a 0

3

+

a 1

2

) 2

+

a 12
2

=

a 02
3

+a^21

Σ^0 =

a 02
6

+

a 12
2
It follows thatΣ−+Σ+= 2 Σ^0

10.32 B+→ω^0 +π+
Jp 1 − 0 −
I01

Free download pdf