50 1 Mathematical Physics
Differentiating, limn=∞
(
−2(n^2 +n1)
)
=∞∞
Differentiating again, limn=∞
(
−^22
)
=−1(=L)
∣
∣
∣
∣
1
L
∣
∣
∣
∣=
∣
∣
∣
∣
1
− 1
∣
∣
∣
∣=^1
The series (A)is
I. Absolutely convergent when|Lx|<1or|x|>
∣
∣L^1
∣
∣i.e.−
∣
∣^1
L
∣
∣<x<
+
∣
∣^1
L
∣
∣
II. Divergent when|Lx|>1, or|x|>
∣
∣^1
L
∣
∣
III. No test when|Lx|=1, or|x|=
∣∣ 1
L
∣
∣.
By I the series is absolutely convergent whenxlies between−1 and+ 1
By II the series is divergent whenxis less than−1 or greater than+ 1
By III there is no test whenx=±1.
Thus the given series is said to have [− 1 ,1] as the interval of convergence.
1.36 f(x)=logx;f(1)= 0
f′(x)=
1
x
;f′(1)= 1
f′′(x)=−
1
x^2
;f′′(1)=− 1
f′′′(x)=
2
x^3
;f′′′(1)= 2
Substitute in the Taylor series
f(x)=f(a)+
(x−a)
1!
f′(a)+
(x−a)^2
2!
f′′(a)+
(x−a)^3
3!
f′′′(a)+···
logx= 0 +(x−1)−
1
2
(x−1)^2 +
1
3
(x−1)^2 −···
1.37 Use the Maclaurin’s series
f(x)=f(0)+
x
1!
f′(0)+
x^2
2!
f′′(0)+
x^3
3!
f′′′(0)+··· (1)
Differentiating first and then placingx=0, we get
f(x)=cosx,f(0)= 1
f′(x)=−sinxf′(0)= 0
f′′(x)=−cosx,f′′(0)=− 1
f′′′(x)=sinx,f′′′(0)= 0
fiv(x)=cosx,fiv(0)= 1
etc.
Substituting in (1)
cosx= 1 −
x^2
2!
+
x^4
4!
−
x^6
6!
+···
The series is convergent with all the values ofx.