54 1 Mathematical Physics
1.48x^2 /^3 +y^2 /^3 =a^2 /^3 (1)
The arcABgenerates only one half of the surface.Sx
2= 2 π∫bay[
1 +
(
dy
dx) 2 ]^1 /^2
dx (2)From (1) we find
dy
dx=−
y^1 /^3
x^1 /^3;y=(
a(^23)
−x
23 )^3 /^2
(3)
Substituting (3) in (2)
Sx
2= 2 π∫a0(a^2 /^3 −x^2 /^3 )[
1 +
y^2 /^3
x^2 /^3] 1 / 2
dx= 2 π∫a0(a^2 /^3 −x^2 /^3 )^3 /^2(
a^2 /^3
x^2 /^3) 1 / 2
dx= 2 πa^1 /^3∫a0(a^2 /^3 −x^2 /^3 )^3 /^2 x−^1 /^3 dx=
6 πa^2
5∴Sx=12 πa^2
5Fig. 1.13Curve of
hypocycloid
x^2 /^3 +y^2 /^3 =a^2 /^3
1.49
∫a0∫√a (^2) −x 2
0
(x+y)dydx=
∫a
0
[∫√
a^2 −x^20(x+y)dy]
dx=
∫a0[(
xy+
y^2
2)
dx]√a (^2) −x 2
0
∫a
0
(
x√
a^2 −x^2 +a^2 −x^2
2)
dx=
2 a^3
31.50 Area to be calculated is
A=ACFD= 2 ×ABED