1.3 Solutions 75
But in (2),F=F(y′).
Hence
∂F
∂y= 0
∂F
∂y′=
∂
∂y′(1+y′^2 )(^12)
=y′(1+y′^2 )−^1 /^2
d
dx
[
y′(1+y′^2 )−^1 /^2]
= 0
ory′(1+y′^2 )−^1 /^2 =C=constant
ory′^2 (1−C^2 )=C^2ory′=dy
dx=a=constantIntegratingy=ax+bwhich is the equation to a straight line. The constants
aandbcan be found from the coordinatesP 0 (x 0 ,y 0 ) andP 1 (x 1 ,y 1 )1.90 The velocity of the bead which starts from rest is
ds
dt=
√
2 gy (1)The time of descent is thereforeI=t=∫
ds
√
2 gy=
1
√
2 g∫ √
dx^2 +dy^2
y=
1
√
2 g∫ √
1 +y′^2
ydx (2)F=
√
(1+y′^2 )
y(3)
HereFinvolves onlyyandy′. The Euler equation is
dF
dx−
d
dx(
∂F
∂y′)=0(4)
which does not containxexplicitly. In that caseF(y,y′)isgivenby
dF
dx=
∂F
∂ydy
dx+
∂F
∂y′dy′
dx(5)
Multiply (4) byddyx
dy
dx.
dF
dy−
dy
dxd
dx(
dF
dy′)
=0(6)
Combining (5) and (6)
dF
dx=
d
dx(
dF
dy′dy
dx)
(7)
IntegratingF=ddFy′ddyx+C