5-3 TWO CONTINUOUS RANDOM VARIABLES 163This is an exponential distribution with 0.003. Now, for the conditional
probability density function isThe conditional probability density function of Y, given that x1500, is nonzero on the solid
line in Fig. 5-11.
Determine the probability that Yexceeds 2000, given that x1500. That is, determine
The conditional probability density function is integrated as follows:0.002e^3 ae0.002y
0.002
`
2000b0.002e^3 ae^4
0.002
b0.368P 1 Y 2000|x 15002
2000fY | 15001 y 2 dy
20000.002e0.002^115002 0.002y dyP 1 Y
20000 x 15002.0.002e0.002x0.002y for 0x and xy
fY |x 1 y 2 fXY 1 x, y 2 fx 1 x 2
610 ^6 e0.001x0.002y
0.003e0.003x0 x and xy 610 ^6 e0.001x ae0.002x
0.002b0.003e0.003x for x
0
fX 1 x 2
x610 ^6 e0.001x0.002y dy 610 ^6 e0.001x ae0.002y
0.002`
xbLet Rxdenote the set of all points in the range of (X, Y) for which Xx. The condi-
tional meanof Ygiven Xx, denoted asand the conditional varianceof Ygiven Xx, denoted as isV 1 Y 0 x 2 (5-20)
Rx1 yY | x 22 fY | x 1 y 2 dy
Rxy^2 fY | x 1 y 2 dy^2 Y |xV 1 Y 0 x 2 or ^2 Y 0 x,E 1 Y | x 2
Rxy fY |x 1 y 2 dyE 1 Y 0 x 2 or Y (^0) x, is
Definition
y
0 x
0
1500
1500
Figure 5-11 The
conditional probability
density function forY,
given thatx1500, is
nonzero over the solid
line.
c 05 .qxd 5/13/02 1:49 PM Page 163 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files: