176 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONSIf Xand Yare independent random variables,XYXY 0 (5-31)EXAMPLE 5-31 For the two random variables in Fig. 5-16, show that XY0.
The two random variables in this example are continuous random variables. In this case
E(XY) is defined as the double integral over the range of (X, Y). That is,Also,2
16£y^3 3 `
40§1
8364 34 8 3
E 1 Y 2
4020y fXY 1 x, y 2 dx dy1
16(^) 
4
0
y^2 £
20x dx§ dy1
16(^) 
4
0
y^2 £x^2    2  2 0 § dy  1 16 £y^2    2
4
0
§ 38    34 
1
6
316 24  4  3
E 1 X 2
4020x fXY 1 x, y 2 dx dy1
16(^) 
4
0
£
20x^2 dx§ dy1
16(^) 
4
0
£x^3    3  2 0 § dy  1 16 (^)  4 0 y^2 38  34 dy 1 6 £y^3    3
4
0
§
1
6
364 34  32 9
E 1 XY 2
4020xy fXY 1 x, y 2 dx dy1
16(^) 
4
0
£
20x^2 y^2 dx§ dy1
16(^) 
4
0
y^2 £x^3    3 `
2
0
§
Figure 5-16 Random variables
with zero covariance from Example
5-31.
1
1
2
3
y
2
x
4
0
fXY(x,y) = xy 161
c 05 .qxd 5/13/02 1:50 PM Page 176 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files:
