5-10This last summation is the binomial expansion of [pet(1p)]n, soTaking the first and second derivatives, we obtainandIf we set t0 in , we obtainwhich is the mean of the binomial random variable X. Now if we set t0 inTherefore, the variance of the binomial random variable isEXAMPLE S5-6 Find the moment generating function of the normal random variable and use it to show that
the mean and variance of this random variable are and ^2 , respectively.
The moment generating function isIf we complete the square in the exponent, we haveand thenet(^2) t (^2
2)
1
12 e^11
223 x^1 t(^2242) 2
dx
MX 1 t 2
1
12 e^53 x^1 t(^2242) 2 t (^2) t (^2) (^46
12) (^22)
dx
x^2 21 t^22 x^2 3 x 1 t^2242 2 t^2 t^2 ^4
1
12 e^3 x(^2) 21 t (^22) x (^24
12) (^22)
dx
MX 1 t 2
etx1
12 e^1 x^2(^2
12) (^22)
dx
^2 ¿ 2 ^2 np 11 pnp 2 1 np 22 npnp^2 np 11 p 2
MX– 1 t (^20) t 0 ¿ 2 np 11 pnp 2
M–X 1 t 2 ,
MX¿ 1 t (^20) t 0 ¿ 1 np
MX¿ 1 t 2
MX– 1 t 2
d^2 MX 1 t 2
dt^2
npet 11 pnpet 231 p 1 et 124 n^2
MX¿ 1 t 2
dMX 1 t 2
dt
npet 31 p 1 et 124 n^1
MX 1 t 2 3 pet 11 p 24 n
PQ220 6234F.CD(05) 5/13/02 4:51 PM Page 10 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark