In the case of a discrete random variable, the interpretation of the likelihood function is
clear. The likelihood function of the sample L( ) is just the probabilityThat is, L( ) is just the probability of obtaining the sample values x 1 , x 2 ,, xn. Therefore, in
the discrete case, the maximum likelihood estimator is an estimator that maximizes the prob-
ability of occurrence of the sample values.EXAMPLE 7-6 Let Xbe a Bernoulli random variable. The probability mass function iswhere pis the parameter to be estimated. The likelihood function of a random sample of size
nisWe observe that if maximizes L(p), also maximizes ln L(p). Therefore,NowEquating this to zero and solving for pyields. Therefore, the maximum
likelihood estimator of pisPˆ1
n^ ani 1Xipˆ (^11) n 2 gni 1 xi
d ln L 1 p 2
dp
a
n
i 1
xi
p
an a
n
i 1
xib
1 p
ln L 1 p 2 aa
n
i 1
xib ln pana
n
i 1
xib ln 11 p 2
pˆ pˆ
q
n
i 1
pxi 11 p 21 xipa
n
ix 1 i 11 p 2 na
n
i 1
xi
L 1 p 2 px^111 p 21 x^1 px^211 p 21 x^2 p pxn 11 p 21 xn
f 1 x; p 2 e
px 11 p 21 x, x0, 1
0, otherwise
p
P 1 X 1 x 1 , X 2 x 2 ,p, Xnxn 2
7-3 METHODS OF POINT ESTIMATION 231
Suppose that Xis a random variable with probability distribution f(x; ), where is
a single unknown parameter. Let x 1 , x 2 ,, xnbe the observed values in a random
sample of size n. Then the likelihood functionof the sample is
(7-5)
Note that the likelihood function is now a function of only the unknown parameter
The maximum likelihood estimatorof is the value of that maximizes the like-
lihood function L().
.
L 1 2 f 1 x 1 ; 2 f 1 x 2 ; 2 pf 1 xn; 2
p
Definition
c07.qxd 5/15/02 10:18 M Page 231 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files: