270 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE
8-7 TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION
Consider a population of semiconductor processors. Suppose that the speed of these processors
has a normal distribution with mean 600 megahertz and standard deviation 30 mega-
hertz. Then the interval from 600 1.96(30) 541.2 to 600 1.96(30) 658.8 megahertz
captures the speed of 95% of the processors in this population because the interval from
1.96 to 1.96 captures 95% of the area under the standard normal curve. The interval from
z 2 to z 2 is called a tolerance interval.
If and are unknown, we can use the data from a random sample of size nto compute
and s, and then form the interval. However, because of sampling
variability in and s, it is likely that this interval will contain less than 95% of the values in
the population. The solution to this problem is to replace 1.96 by some value that will make
the proportion of the distribution contained in the interval 95% with some level of confidence.
Fortunately, it is easy to do this.
x
x 1 x1.96 s, x1.96 s 2
Atolerance intervalfor capturing at least % of the values in a normal distribution
with confidence level 100(1 )% is
where kis a tolerance interval factor found in Appendix Table XI. Values are given
for 90%, 95%, and 95% and for 95% and 99% confidence.
xks, xks
Definition
8-51. Consider the television tube brightness test described
in Exercise 8-24. Compute a 99% prediction interval on the
brightness of the next tube tested. Compare the length of the
prediction interval with the length of the 99% CI on the popu-
lation mean.
8-52. Consider the margarine test described in Exercise 8-25.
Compute a 99% prediction interval on the polyunsaturated
fatty acid in the next package of margarine that is tested.
Compare the length of the prediction interval with the length
of the 99% CI on the population mean.
8-53. Consider the test on the compressive strength of con-
crete described in Exercise 8-26. Compute a 90% prediction
interval on the next specimen of concrete tested.
8-54. Consider the suspension rod diameter measurements
described in Exercise 8-27. Compute a 95% prediction inter-
val on the diameter of the next rod tested. Compare the length
of the prediction interval with the length of the 95% CI on the
population mean.
8-55. Consider the bottle wall thickness measurements
described in Exercise 8-29. Compute a 90% prediction interval
on the wall thickness of the next bottle tested.
8-56. How would you obtain a one-sided prediction bound
on a future observation? Apply this procedure to obtain a 95%
one-sided prediction bound on the wall thickness of the next
bottle for the situation described in Exercise 8-29.
8-57. Consider the fuel rod enrichment data described
in Exercise 8-30. Compute a 99% prediction interval on the
enrichment of the next rod tested. Compare the length of the
prediction interval with the length of the 95% CI on the
population mean.
8-58. Consider the syrup dispensing measurements de-
scribed in Exercise 8-31. Compute a 95% prediction interval
on the syrup volume in the next beverage dispensed. Compare
the length of the prediction interval with the length of the 95%
CI on the population mean.
8-59. Consider the natural frequency of beams described
in Exercise 8-32. Compute a 90% prediction interval on the
diameter of the natural frequency of the next beam of this
type that will be tested. Compare the length of the prediction
interval with the length of the 95% CI on the population
mean.
c 08 .qxd 5/15/02 6:13 PM Page 270 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files: