Applied Statistics and Probability for Engineers

(Chris Devlin) #1
and have approximate normal distributions. We are interested in
testing the hypotheses

The statistic

H 1 : p 1 p 2

H 0 : p 1 p 2

Pˆ 1 X 1
n 1 Pˆ 2 X 2
n 2


362 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

Z (10-32)

Pˆ 1 Pˆ 2  1 p 1 p 22

B

p 111 p 12
n 1

p 211 p 22
n 2

is distributed approximately as standard normal and is the basis of a test for H 0 : p 1 p 2.
Specifically, if the null hypothesis H 0 : p 1 p 2 is true, using the fact that p 1 p 2 p, the
random variable

is distributed approximately N(0, 1). An estimator of the common parameter pis

The test statisticfor H 0 : p 1 p 2 is then

This leads to the test procedures described below.

Z 0 

Pˆ 1 Pˆ 2

B

Pˆ 11 Pˆ 2 a

1
n 1

1
n 2 b

Pˆ

X 1 X 2
n 1 n 2

Z

Pˆ 1 Pˆ 2

B

p 11 p 2 a

1
n 1

1
n 2 b

Null hypothesis: H 0 : p 1 p 2

Test statistic: (10-33)

Alternative Hypotheses Rejection Criterion

H 1 : p 1
p 2 z 0
z
H 1 : p 1 p 2 z 0 z

H 1 : p 1 p 2 z 0
z
2 or z 0 z
2

Z 0 

Pˆ 1 Pˆ 2

B

Pˆ 11 Pˆ 2 a

1
n 1

1
n 2 b

c 10 .qxd 5/16/02 1:31 PM Page 362 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files:

Free download pdf