Applied Statistics and Probability for Engineers

(Chris Devlin) #1
10-2

Proof Since U 1 and U 2 are independent chi-square random variables, their joint probability
distribution is

Using the method in Equation S5-4, define the new random variable MU 2. The inverse
solutions of

are

Therefore, the Jacobian is

Thus, the joint probability density function of Xand Mis

The probability density function of Fis

Substituting and , we obtain

f 1 x 2 

a

 1
 2 b

 1 2
x^1 2 ^1

21 ^1 ^22    2  a

 1
2
b  a

 2
2
b

(^) 
0
°
2 z
 1
 2 x^1
¢
1  1  22 2  1
ez 2 a
 1
 2 x^1 b
 1
dz
dm 2 a
 1
 2 x^1 b
 1
z dz
m
z^ a
 1
 2 x^1 b

a
 1
 2 xb
 1 2  1
a
 1
 2 b
21 ^1 ^22 2  a
 1
2
b  a
 2
2
b
(^) 
0
m^1 ^1 ^22 2 ^1 e^1 m^2231 ^1 ^22 x^14 dm


f 1 x 2 

0

f 1 x, m 2 dm

f 1 x, m 2 

a

 1
 2 mxb

 1 2  1

m^2 2 ^1 e^11 22 31 ^1 ^22 mxm^4 a

 1
 2 b^ m

2 ^1   2  a

 1
2
b 2 ^2 2 ^ a

 2
2
b

, 0

x, m


J


 1
 2 m
0

 1
 2 x
1




 1
 2 m

u 1 

 1

 2 mx^ and^ u^2 m

xa

u 1
 1 b^a

u 2

 2 b^ and^ mu^2

f 1 u 1 , u 22 

u 11   2 ^1 u 22 2 ^1

2 ^1   2  a

 1
2

b 2 ^2 2 ^ a

 2
2

b

e^1 u^1 u^22 2 , 0

u 1 , u 2


PQ220 6234F.CD(10) 5/16/02 2:41 PM Page 2 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark F

Free download pdf