The fittedor estimated regression lineis therefore(11-9)Note that each pair of observations satisfies the relationshipwhere eiyi is called the residual.The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide in-
formation about the adequacy of the fitted model.
Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x 1 , y 1 ), (x 2 , y 2 ), p, (xn, yn), let(11-10)and(11-11)EXAMPLE 11-1 We will fit a simple linear regression model to the oxygen purity data in Table 11-1. The
following quantities may be computed:(^) a
20
i 1
yi^2 170,044.5321 (^) a
20
i 1
xi^2 29.2892 (^) a
20
i 1
xiyi2,214.6566
n (^20) a
20
i 1
xi23.92 (^) a
20
i 1
yi1,843.21 x1.1960 y92.1605
Sx y ani 1yi 1 xi x 22 ani 1xiyiaani 1xib
aani 1yib
nSx x ani 11 xi x 22 ani 1x (^2) i
aa
n
i 1
xib
2
n
yˆi
yiˆ 0 ˆ 1 xiei, i1, 2,p, n
yˆˆ 0 ˆ 1 xThe least squares estimatesof the intercept and slope in the simple linear regression
model are(11-7)(11-8)where y 11
n 2 g
n
i 1 yi and x^11 n^2 gn
i 1 xi.ˆ 1 ani 1yi xiaani 1yib aani 1xibnani 1x (^2) i
aa
n
i 1
xib
2
n
ˆ 0 y ˆ 1 x
Definition
11-2 SIMPLE LINEAR REGRESSION 377
c 11 .qxd 5/20/02 1:14 PM Page 377 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files: