13-2.7 Technical Details about the Analysis of Variance (CD Only)Derivation of the ANOVA Identity
The proof of the fundamental ANOVA identity in Equation 13-5 is straightforward. Note that
we may writeorNote that the cross-product term in the previous equation is zero, sinceTherefore, we have shown that Equation 13-5 is correct.Expected Mean Squares
In the text we state thatWe can prove this directly by apply the expected value operator. Sincewe will initially work with the treatment sum of squares. Nowand from the model Yijiijwe haveandsince. Substituting for and in the expression for SSTreatmentsyieldsE cn (^) a
a
i 1
^2 in (^) a
a
i 1
(^2) i.an 2 .. 2 n (^) a
a
i 1
i (^) i. 2 n .. (^) a
a
i 1
i 2 n .. (^) a
a
i 1
(^) i.d
E 1 SSTreatments 2 E cn (^) a
a
i 1
1 ii. .. 22 d
g Yi. Y..
a
i 1 i^0
Y....
Yi.ii.
E 1 SSTreatments 2 E cn (^) a
a
i 1
1 Yi. Y.. 22 d
MSTreatments
SSTreatments
a 1
E 1 MSTreatments 2 ^2
n (^) a
a
i 1
2
i
a 1
a
n
j 1
1 yij^ yi.^2 yi.^ nyi.yi.^ n^1 yi.n^2 ^0
(^2) a
a
i 1 a
n
j 1
1 yi. y.. 21 yij yi. 2
a
a
i 1
(^) a
n
j 1
1 yij y.. 22 na
a
i 1
1 yi.^ y..^2
(^2)
a
a
i 1 a
n
j 1
1 yij yi. 22
a
a
i 1 a
n
j 1
1 yij y.. 22 a
a
i 1 a
n
j 1
31 yi. y.. 2 1 yij yi. 242
13-6
PQ220 6234F.Ch 13_CD 5/8/02 7:54 PM Page 6 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:PQ220 MONT 8/5/2002:Ch 13: