Partial Differential Equations with MATLAB

(Elle) #1

468 An Introduction to Partial Differential Equations with MATLAB©R


Finally, we write


yp=−
sinkx
k

[


coskL
sinkL

∫L


0

f(ξ)sinkξ dξ−

∫L


x

f(ξ)coskξ dξ

]


+


coskx
k

∫x

0

f(ξ)sinkξ dξ.

Since this representation is different forξ<xandξ>x,webreakupthe
first integral atxand rewrite


yp=

∫x

0

f(x)

[


coskxsinkξ
k


sinkxcoskLsinkξ
ksinkL

]



+


∫L


x

f(ξ)

[


sinkxcoskξ
k


sinkxcoskLsinkξ
ksinkL

]



=


∫L


0

f(ξ)G(x;ξ)dξ,

where


G(x;ξ)=


⎪⎪



⎪⎪



coskxsinkξ
k


sinkxcoskLsinkξ
ksinkL
, if 0≤ξ≤x

sinkxcoskξ
k


sinkxcoskLsinkξ
ksinkL

, ifx≤ξ≤L.‡

Notice thatGsatisfies the boundary conditions; however, this is obvious if we
rewriteGas


G(x;ξ)=


⎪⎪



⎪⎪



1


ksinkL

sinkξsink(L−x), if 0≤ξ≤x

1
ksinkL

sinkxsink(L−ξ), ifx≤ξ≤L§

(see Exercise 8b).
So let’s list the important properties of this particular Green’s function
(which, as it turns out, all Green’s functions will possess, although the dis-
continuity in the derivative may behave differently).


1.Symmetry: G(x;ξ)=G(ξ;x) for allx, ξin [0,L].

2.Continuity: Gis continuous on [0,L] and, specifically, at the point
ξ=x.

3.Derivative discontinuous: The derivative

Gx(x;ξ)=


⎪⎪



⎪⎪




1


sinkL

sinxξcosk(L−x), if 0<ξ<x,

1
sinkL

coskxsink(L−ξ), ifx<ξ<L,
Free download pdf