468 An Introduction to Partial Differential Equations with MATLAB©R
Finally, we write
yp=−
sinkx
k[
coskL
sinkL∫L
0f(ξ)sinkξ dξ−∫L
xf(ξ)coskξ dξ]
+
coskx
k∫x0f(ξ)sinkξ dξ.Since this representation is different forξ<xandξ>x,webreakupthe
first integral atxand rewrite
yp=∫x0f(x)[
coskxsinkξ
k−
sinkxcoskLsinkξ
ksinkL]
dξ+
∫L
xf(ξ)[
sinkxcoskξ
k−
sinkxcoskLsinkξ
ksinkL]
dξ=
∫L
0f(ξ)G(x;ξ)dξ,where
G(x;ξ)=⎧
⎪⎪
⎨
⎪⎪
⎩
coskxsinkξ
k−
sinkxcoskLsinkξ
ksinkL
, if 0≤ξ≤xsinkxcoskξ
k−
sinkxcoskLsinkξ
ksinkL, ifx≤ξ≤L.‡Notice thatGsatisfies the boundary conditions; however, this is obvious if we
rewriteGas
G(x;ξ)=⎧
⎪⎪
⎨
⎪⎪
⎩
1
ksinkLsinkξsink(L−x), if 0≤ξ≤x1
ksinkLsinkxsink(L−ξ), ifx≤ξ≤L§(see Exercise 8b).
So let’s list the important properties of this particular Green’s function
(which, as it turns out, all Green’s functions will possess, although the dis-
continuity in the derivative may behave differently).
1.Symmetry: G(x;ξ)=G(ξ;x) for allx, ξin [0,L].2.Continuity: Gis continuous on [0,L] and, specifically, at the point
ξ=x.3.Derivative discontinuous: The derivativeGx(x;ξ)=⎧
⎪⎪
⎨
⎪⎪
⎩
−
1
sinkLsinxξcosk(L−x), if 0<ξ<x,1
sinkLcoskxsink(L−ξ), ifx<ξ<L,