Partial Differential Equations with MATLAB

(Elle) #1

Nonhomogeneous Problems and Green’s Functions 471


So we have

G(x;ξ)=


⎪⎪


⎪⎨


⎪⎪


⎪⎩



y 1 (ξ)y 2 (x)
r(ξ)W(ξ)

, ifa≤ξ≤x(orξ≤x≤b),


y 1 (x)y 2 (ξ)
r(ξ)W(ξ)

, ifx≤ξ≤b(ora≤x≤ξ).

It’s easy to see thatGsatisfies Properties (1), (2), (4) and (5), above. What
about the jump in the derivative? We have


Gx(ξ+,ξ)−Gx(ξ−,ξ)=
y 1 ′(ξ)y 2 (ξ)−y 1 (ξ)y′ 2 (ξ)
r(ξ)W(ξ)

=−

1


r(ξ)

.


We put everything together in a theorem.

Theorem 10.1Given the regular Sturm–Liouville problem


(ry′)′+(q+λw)y=−f(x), a<x<b,
a 1 y(a)+a 2 y′(a)=b 1 y(b)+b 2 y′(b)=0,

suppose thatλis not an eigenvalue and suppose thaty 1 andy 2 are solutions
of the associated homogeneous equation, satisfying


a 1 y 1 (a)+a 2 y 1 ′(a)=b 1 y 2 (b)+b 2 y 2 ′(b)=0.

Then the solution of the problem is given by


y=

∫b

a

G(x, ξ)f(ξ)dξ,

whereGreen’s functionGis given by


G(x;ξ)=


⎪⎪


⎪⎨


⎪⎪


⎪⎩



y 1 (ξ)y 2 (x)
r(ξ)W(ξ)

, ifa≤ξ≤x(orξ≤x≤b),


y 1 (x)y 2 (ξ)
r(ξ)W(ξ)

, ifx≤ξ≤b(ora≤x≤ξ).

Further,Gsatisfies the following properties:



  1. G(x;ξ)=G(ξ;x)for allx, ξin[a, b]. (It turns out that this symmetry is
    a result of the problem’s being self-adjoint. It is often called the property
    ofreciprocityorMaxwell’s reciprocity.∗∗)


∗∗After James Clark Maxwell.

Free download pdf