Nonhomogeneous Problems and Green’s Functions 471
So we haveG(x;ξ)=⎧
⎪⎪
⎪⎨
⎪⎪
⎪⎩
−
y 1 (ξ)y 2 (x)
r(ξ)W(ξ), ifa≤ξ≤x(orξ≤x≤b),−
y 1 (x)y 2 (ξ)
r(ξ)W(ξ), ifx≤ξ≤b(ora≤x≤ξ).It’s easy to see thatGsatisfies Properties (1), (2), (4) and (5), above. What
about the jump in the derivative? We have
Gx(ξ+,ξ)−Gx(ξ−,ξ)=
y 1 ′(ξ)y 2 (ξ)−y 1 (ξ)y′ 2 (ξ)
r(ξ)W(ξ)=−1
r(ξ).
We put everything together in a theorem.Theorem 10.1Given the regular Sturm–Liouville problem
(ry′)′+(q+λw)y=−f(x), a<x<b,
a 1 y(a)+a 2 y′(a)=b 1 y(b)+b 2 y′(b)=0,suppose thatλis not an eigenvalue and suppose thaty 1 andy 2 are solutions
of the associated homogeneous equation, satisfying
a 1 y 1 (a)+a 2 y 1 ′(a)=b 1 y 2 (b)+b 2 y 2 ′(b)=0.Then the solution of the problem is given by
y=∫baG(x, ξ)f(ξ)dξ,whereGreen’s functionGis given by
G(x;ξ)=⎧
⎪⎪
⎪⎨
⎪⎪
⎪⎩
−
y 1 (ξ)y 2 (x)
r(ξ)W(ξ), ifa≤ξ≤x(orξ≤x≤b),−
y 1 (x)y 2 (ξ)
r(ξ)W(ξ), ifx≤ξ≤b(ora≤x≤ξ).Further,Gsatisfies the following properties:
- G(x;ξ)=G(ξ;x)for allx, ξin[a, b]. (It turns out that this symmetry is
a result of the problem’s being self-adjoint. It is often called the property
ofreciprocityorMaxwell’s reciprocity.∗∗) 
∗∗After James Clark Maxwell.