Engineering Fundamentals: An Introduction to Engineering, 4th ed.c

(Steven Felgate) #1

602 Chapter 18 Mathematics in Engineering


n


1 2.000000
2 2.250000
5 2.488320
10 2.593742
20 2.653298
50 2.691588
100 2.704814
200 2.711517
500 2.715569
1000 2.716924
2000 2.717603
5000 2.718010
10000 2.718146

a 1 


1
n

b


n

xf(x)  2
x
f(x) e
x
f(x)  3
x

0 1 1.00 1.00
0.2 1.15 1.22 1.25
0.4 1.32 1.49 1.55
0.6 1.52 1.82 1.93
0.8 1.74 2.23 2.41
1 2.00 2.72 3.00
1.2 2.30 3.32 3.74
1.4 2.64 4.06 4.66
1.6 3.03 4.95 5.80
1.8 3.48 6.05 7.22
2 4.00 7.39 9.00
2.2 4.59 9.03 11.21
2.4 5.28 11.02 13.97
2.6 6.06 13.46 17.40
2.8 6.96 16.44 21.67
3 8.00 20.09 27.00
3.2 9.19 24.53 33.63
3.4 10.56 29.96 41.90
3.6 12.13 36.60 52.20
3.8 13.93 44.70 65.02
4 16.00 54.60 81.00

f
(x

)


90


80


70


60


50


40


30


20


10


0
01234

x


2 x
ex
3 x

■Figure 18.13 The comparison of functions 2
x
, e
x
,and 3
x
.

AsnSq2.7182818285....


The exponential functions have important characteristics, as demonstrated by examples
shown in Table 18.5. Example 1 shows the changes that occur in a exponential model when the
growth rate of an exponential function increases. Example 2 demonstrates similar changes for a
decaying exponential function. Note these important effects as you study Table 18.5.
A good understanding of these concepts will be beneficial when you take future engineering classes.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

圀圀圀⸀夀䄀娀䐀䄀一倀刀䔀匀匀⸀䌀伀䴀圀圀圀⸀夀䄀娀䐀䄀一倀刀䔀匀匀⸀䌀伀䴀

Free download pdf