EDITOR’S PROOF
198 D. Kselman
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
xS=
(^3) / 2 −{GP·( 1 −xP)}
1 +GP
xP if and only if xP<^3 / 2 −GP.
In turn, for anyGP>^1 / 2 Sub-lemma1 allows to expressxSas follows:
xS=
{
∅ if^1 / 2 <xP<^3 / 2 −GP,
(^3) / 2 −{GP·( 1 −xP)}
1 +GP ifxP>^3 /^2 −GP.
(A.4)
We now move to identifying ideological swing votersxSin the range[xP, 1 ].Given
our specification of programmatic utilityui,P(prog), for anyGP>^1 / 2 the following
expression implicitly definesxSwhen∼PchoosesvmandPchoosesxP>^1 / 2 :
1 −(xS−^1 / 2 )=GP·
{
1 −(xS−xP)
}
. (A.5)
This can be rewritten as:
xS=
(^3) / 2 −{GP·( 1 +xP)}
1 −GP
. (A.6)
Basedon(A.6) we can establish the following Sub-lemmas:
Sub-lemma 2Fo r a n yGP>^1 / 2 ,when∼PchoosesvmandPchoosesxP>^1 / 2 ,
there is no swing voter ideological voterxSin the range[xP, 1 ]for values ofxP<
(^1) / (^2) GP.
Sub-lemma 3Fo r a n yGP>^1 / 2 ,when∼PchoosesvmandPchoosesxP>^1 / 2 ,
there is no swing voter ideological voterxSin the range[xP, 1 ]for values ofxP>
(^3) / 2 −GP.
Proof of Sub-lemma 2 We are looking for swing ideological voters in the range
[xP, 1 ]. By definition, if (A.6) generates a valuexS>1, then there is no swing
ideological voterxSin the range[xP, 1 ]: no voters in the applicable range satisfy the
indifference condition in (A.6). It is then straightforward to establish that (algebra
omitted):
xS=
(^3) / 2 −{GP·( 1 +xP)}
1 −GP
1 if and only if xP<^1 / (^2) GP.
Proof of Sub-lemma 3 We are looking for swing ideological voters in the range
[xP, 1 ]. By definition, if (A.6) generates a valuexS<xP, then there is no swing
ideological voterxSin the range[xP, 1 ]: no voters in the applicable range satisfy the
indifference condition in (A.6). It is then straightforward to establish that (algebra
omitted),
xS=
(^3) / 2 −{GP·( 1 +xP)}
1 −GP
^3 / 2 −GP.