Advances in Risk Management

(Michael S) #1
274 TIME-VARYING RETURN CORRELATIONS AND PORTFOLIOS

Table 14.2 Descriptive statistics ofex postreturns of efficient portfolios


Model Mean Std. dev. Skewness Kurtosis Jarque-Bera


All portfolios
One-month returns

Rolling −0.0044 0.066813 −0.514897 2.3146 179.4399
DCC 0.0033 0.070526 0.012346 2.87996 233.5973


Three-month returns
Rolling −0.0032 0.097966 −0.844897 0.92505 83.4231


DCC 0.0044 0.100200 0.649588 3.00677 299.9517


Six-month returns
Rolling 0.0048 0.127424 −0.753842 0.89383 85.8892


DCC 0.0077 0.131530 0.038403 2.02565 114.8855


[Low-risk portfolios]
One-month returns
Rolling 0.0001 0.058357 0.315829 1.28023 25.8994


DCC 0.0045 0.060822 0.351980 1.85805 50.1717


Three-month returns

Rolling 0.0057 0.083142 −0.328805 0.81550 13.9494
DCC 0.0037 0.089233 0.186751 2.63235 89.8324


Six-month returns

Rolling 0.0157 0.1084 −0.485141 0.60520 16.6189
DCC 0.0113 0.111627 −0.289139 0.07091 4.3136


[High-risk portfolios]
One-month returns

Rolling −0.0081 0.072990 −0.537141 2.32654 100.1449
DCC 0.0023 0.077762 0.325195 2.85595 130.8367


Three-month returns
Rolling −0.0106 0.108346 −0.784015 0.51280 41.5057


DCC 0.0049 0.108615 0.847932 2.88417 170.7150


Six-month returns
Rolling −0.0122 0.140195 −0.745651 0.55011 38.5307


DCC 0.0048 0.146148 0.184092 2.23437 78.2019


The summary statistics ofex postreturns of efficient portfolios created
using the rolling model and DCC model are given in Table 14.2. For each of
the 60 months, one minimum variance portfolio and ten efficient portfolios
are created and theex postreturns of each of these portfolios are calculated
for periods of one month, three months and six months. Furthermore, these

Free download pdf