JEAN-PAUL PAQUIN, ANNICK LAMBERT AND ALAIN CHARBONNEAU 295To simplify the notation, let us defineαt=(1+kc)−t. Equation (1) becomes:
P ̃=∑nt= 1αtε ̃tWe must therefore verify, in accordance with the CLT, whether this weighted average
of random error terms converges towards a normal probability distribution. Given our
initial assumptions we deduct:
E(P ̃)=∑nt= 1αtE(ε ̃t)= 0whereas
V(P ̃)=∑n
t= 1α^2 tV(ε ̃t)=∑n
t= 1α^2 t.Therefore, to verify the CLT we must demonstrate that:
nlim→∞∑n
t= 1αt ̃εt
√
∑n
t= 1α^2 t→N(0, 1)LetφX ̃(h)=E(eihX ̃)= 1 +∑∞
t= 1
(ih)t
t!μtbe the characteristic function of any random vari-
ableX ̃. Given that theε ̃t’s are independent in probability, we may write the characteristic
function of their weighted sum in term of their argument as:
φ∑n
t= 1
αtε ̃t
√∑n
t= 1
α^2 t(h)=E(
eih√∑∑αt ̃εt
α^2 t)
=∏nt= 1e√ihα∑tε ̃t
α^2 t=
∏nt= 1φ ̃ε
√αth
∑
α^2 t
Let us take the logarithm of the characteristic function in term of its arguments and thus
define thefunction:
√∑αt ̃εt
∑α 2
t=∑nt= 1logφε ̃t
αth
√∑
α^2 t
=∑nt= 1log
1 +i√αt
∑
α^2 thμ 1 −
1
2
√αt
∑
α^2 t
2
h^2 μ 2−
i
3!
√αt
∑
α^2 t
3
h^3 μ 3 +
1
4!
√αt
∑
α^2 t
4
h^4 μ 4 +...