316
Table 16.6
Continued
Panel C: post-September 11 period
S&P500 conditional variance equationh11,
=t
1,82
×
10
−^6
+
0,9110
h11,
t−
+ 1
0,0569
h12,
t−
+ 1
0,0002
h22,
t−
+ 1
0,0188
(^2) ε1,
t−
1
−
0,0494
ε1,t
−^1
ε2,t
−^1
- 0,0193
(^2) ε2,
t− - 1
0,0875
(^2) η1,
t− - 1
0,0172
η1,
t−
η 1
2,t
+− 1
0,0008
(^2) η2,
t−
1
6,05
×
10
−^7
0,0018
0,0043
0,00003
0,0036
0,0049
0,0055
0,0042
0,0544
0,0013
(3,0171)
(517,13)
(13,0777)
(0,6622)
(5,2752)
(−
10,069)
(3,4925)
(20,966)
(0,3165)
(0,6577)
IBEX35 conditional variance equationh22,
=t
1,24
×
10
−^6
0,0009
h11,t
−^1
0,0571
h12,
t−
- 1
0,9186
h22,
t− - 1
0,0325
(^2) ε1,
t−
1
−
0,01596
ε1,t
−^1
ε2,t
−^1
0,0019
(^2) ε2,
t−
- 1
0,0003
(^2) η1,
t−
− 1
0,0066
η1,
t−
η 1
2,t
−^1
0,0319
(^2) η2,
t−
1
4,82
×
10
−^7
0,0001
0,0043
0,0013
0,0037
0,0099
0,0025
0,0005
0,0049
0,0032
(2,5799)
(6,6162)
(13,1568)
(709,68)
(8,6504)
(1,6033)
(0,7843)
(0,6382)
(−
1,3466)
(9,8872)
Notes
:h
11
and
h^22
denote the conditional variance for the S&P500
and IBEX35 return series, respectively. Below
the estimated coefficients are the standard errors,
with the corresponding
t-values given in
parentheses.
The expected value is obtained taking expectations
to the non-linear functions, therefore involving
the estimated variance-covariance matrix
of the parameters. In order to calculate the standard
errors,
the function must be linearized using first-order
Taylor series expansion. This is sometimes
called the “delta method”. When a variable
Y
is a function of a variable
X, i.e.,
Y=
F(
X), the delta method allows
us to obtain approximate formulation of the
variance of
Y
if: (1)
Y
is differentiable with respect to
X
and (2) the variance of
X
is known. Therefore:
V(Y)
≈
(
Y)
2 ≈
(
∂Y ∂X
)^2
(
X)
2 ≈
(
∂Y ∂X
)^2
V(
X)
When a variable
Y
is a function of variables
X
and
Z
in the form of
Y=
F(
X,
Z), we can obtain approximate formulation of the
variance of
Y
if: (1)
Y
is differentiable with respect to
X
and
Z
and (2) the
variance of
X
and
Z
and the covariance between
X
and
Z
are known. This is:
V(
Y)
≈
(∂
)Y ∂X
2 V
(X
)+
(
∂Y ∂Z
)^2
V(
Z)
( 2
∂Y ∂X
)(
∂Y ∂Z
)
Cov
(X
,Z
)
Once the variances are calculated it is straightfor
ward to calculate the standard errors.