Advances in Risk Management

(Michael S) #1

316


Table 16.6

Continued

Panel C: post-September 11 period

S&P500 conditional variance equationh11,

=t

1,82

×

10

−^6

+

0,9110

h11,

t−

+ 1

0,0569

h12,

t−

+ 1

0,0002

h22,

t−

+ 1

0,0188

(^2) ε1,
t−
1

0,0494
ε1,t
−^1
ε2,t
−^1



  • 0,0193
    (^2) ε2,
    t−

  • 1
    0,0875
    (^2) η1,
    t−

  • 1
    0,0172
    η1,
    t−
    η 1
    2,t
    +− 1
    0,0008
    (^2) η2,
    t−
    1
    6,05
    ×
    10
    −^7
    0,0018
    0,0043
    0,00003
    0,0036
    0,0049
    0,0055
    0,0042
    0,0544
    0,0013
    (3,0171)
    (517,13)
    (13,0777)
    (0,6622)
    (5,2752)
    (−
    10,069)
    (3,4925)
    (20,966)
    (0,3165)
    (0,6577)
    IBEX35 conditional variance equationh22,
    =t
    1,24
    ×
    10
    −^6


  • 0,0009
    h11,t
    −^1




  • 0,0571
    h12,
    t−



  • 1
    0,9186
    h22,
    t−

  • 1
    0,0325
    (^2) ε1,
    t−
    1

    0,01596
    ε1,t
    −^1
    ε2,t
    −^1


  • 0,0019
    (^2) ε2,
    t−



  • 1
    0,0003
    (^2) η1,
    t−
    − 1
    0,0066
    η1,
    t−
    η 1
    2,t
    −^1


  • 0,0319
    (^2) η2,
    t−
    1
    4,82
    ×
    10
    −^7
    0,0001
    0,0043
    0,0013
    0,0037
    0,0099
    0,0025
    0,0005
    0,0049
    0,0032
    (2,5799)
    (6,6162)
    (13,1568)
    (709,68)
    (8,6504)
    (1,6033)
    (0,7843)
    (0,6382)
    (−
    1,3466)
    (9,8872)
    Notes
    :h
    11
    and
    h^22
    denote the conditional variance for the S&P500
    and IBEX35 return series, respectively. Below
    the estimated coefficients are the standard errors,
    with the corresponding
    t-values given in
    parentheses.
    The expected value is obtained taking expectations
    to the non-linear functions, therefore involving
    the estimated variance-covariance matrix
    of the parameters. In order to calculate the standard
    errors,
    the function must be linearized using first-order
    Taylor series expansion. This is sometimes
    called the “delta method”. When a variable
    Y
    is a function of a variable
    X, i.e.,
    Y=
    F(
    X), the delta method allows
    us to obtain approximate formulation of the
    variance of
    Y
    if: (1)
    Y
    is differentiable with respect to
    X
    and (2) the variance of
    X
    is known. Therefore:
    V(Y)

    (
    Y)
    2 ≈
    (
    ∂Y ∂X
    )^2
    (
    X)
    2 ≈
    (
    ∂Y ∂X
    )^2
    V(
    X)
    When a variable
    Y
    is a function of variables
    X
    and
    Z
    in the form of
    Y=
    F(
    X,
    Z), we can obtain approximate formulation of the
    variance of
    Y
    if: (1)
    Y
    is differentiable with respect to
    X
    and
    Z
    and (2) the
    variance of
    X
    and
    Z
    and the covariance between
    X
    and
    Z
    are known. This is:
    V(
    Y)

    (∂
    )Y ∂X
    2 V
    (X
    )+
    (
    ∂Y ∂Z
    )^2
    V(
    Z)




  • ( 2
    ∂Y ∂X
    )(
    ∂Y ∂Z
    )
    Cov
    (X
    ,Z
    )
    Once the variances are calculated it is straightfor
    ward to calculate the standard errors.



Free download pdf