Ceramic and Glass Materials

(nextflipdebug5) #1

68 M.C. Wilding



  1. D.F. de Sousa et al., Energy transfer and the 2.8-mu m emission of Er3+- and Yb3+-doped low
    silica content calcium aluminate glasses. Phys. Rev. B 62 (5), 3176–3180 (2000).

  2. W.Y. Li, and B.S. Mitchell, Nucleation and crystallization in calcium aluminate glasses. J. Non-
    Cryst. Solids 255 (2–3), 199–207 (1999).

  3. P.F. McMillan, et al., A structural investigation of cao-al2o2 glasses via al-27 mas-nmr. J. Non-
    Cryst. Solids 195 (3), 261–271 (1996).

  4. E.V. Uhlmann, et al., Spectroscopic properties of rare-earth-doped calcium-aluminate-based
    glasses.J. Non Cryst Solids. 178 , 15–22 (1994).

  5. C.A. Angell, Glass forming liquids with microscopic to macroscopic two-state complexity.
    Progress Theor. Phys. Suppl. 126 , 1–8 (1997).

  6. A.C. Hannon, and J.M. Parker, The structure of aluminate glasses by neutron diffraction. J. Non-
    Cryst. 274 (1–3), 102–109 (2000).

  7. J.K.R. Weber, et al., Novel synthesis of calcium oxide-aluminum oxide glasses. Japanese J. App.
    Phys. 1-Regul. Pap. Short Notes Rev Pap. 41 (5A), 3029–3030 (2002).

  8. S. Mukhopadhyay, et al., In situ spinel bonded refractory castable in relation to co-precipitation
    and sol-gel derived spinel forming agents. Ceram. Int. 29 (8), 857–868 (2003).

  9. C.J. Ting, and H.Y. Lu, Hot-pressing of magnesium aluminate spinel - I. Kinetics and densification
    mechanism.Acta Mater. 47 (3), 817–830 (1999).

  10. C.J. Ting, and H.Y. Lu, Hot-pressing of magnesium aluminate spinel - II. Microstructure develop-
    ment.Acta Mater. 47 (3), 831–840 (1999).

  11. M.W. Vance, et al., Influence of spinel additives on high-alumina spinel castables. Am. Ceram.
    Soc. Bull. 73 (11), 70–74 (1994).

  12. J.W. Lee, and J.G. Duh, High-temperature MgO-C-Al refractories-metal reactions in high-
    aluminum-content alloy steels. J. Mater. Res. 18 (8), 1950–1959 (2003).

  13. A. Ghosh, et al., Effect of spinel content on the properties of magnesia-spinel composite refractory.
    J. Eur. Ceram. Soc. 24 (7), 2079–2085 (2004).

  14. K. Goto, B.B. Argent, and W.E. Lee, Corrosion of mgo-mgal2o4 spinel refractory bricks by cal-
    cium aluminosilicate slag. J. Am. Ceram. Soc. 80 (2), 461–471 (1997).

  15. A.H. De Aza, et al., Corrosion of a high alumina concrete with synthetic spinel addition by ladle
    slag.Boletin de la Sociedad Espanola de Ceramica y Vidrio 42 (6), 375–378 (2003).

  16. B. Hallstedt, The magnesium-oxygen system. Calphad-Comp. Coupling Phase Diagrams
    Thermochem. 17 (3), 281–286 (1993).

  17. B. Hallstedt, Thermodynamic assessment of the system Mgo-Al2O3. J. Am. Ceram. Soc. 75 (6),
    1497–1507 (1992).

  18. H.S.C. Oneill, and A. Navrotsky, Cation distributions and thermodynamic properties of binary
    spinel solid-solutions. Am. Mineral. 69 (7–8), 733–753 (1984).

  19. F.C. Klaassen, et al., Post irradiation examination of irradiated americium oxide and uranium
    dioxide in magnesium aluminate spinel. J. Nucl. Mater. 319 , 108–117 (2003).

  20. G.P. Pells, Radiation effects in ceramics. MRS Bulle. 22 (4), 22–28 (1997).

  21. I. Ganesh, et al., An efficient MgAl2O4 spinel additive for improved slag erosion and penetration
    resistance of high-Al2O3 and MgO-C refractories. Ceram. Int. 28 (3), 245–253 (2002).

  22. V.T. Gritsyna, et al., Neutron irradiation effects in magnesium-aluminate spinel doped with tran-
    sition metals. J. Nucl. Mater. 283 (Part B), 927–931 (2000).

  23. S.E. Enescu, et al., High-temperature annealing behavior of ion-implanted spinel single crystals.
    J. Mater. Res. 19 (12), 3463–3473 (2004).

  24. Y.W. Lee, et al., Study on the mechanical properties and thermal conductivity of silicon carbide-,
    zirconia- and magnesia aluminate-based simulated inert matrix nuclear fuel materials after cyclic
    thermal shock. J. Nucl. Mater. 319 , 15–23 (2003).

  25. T. Wiss, and H. Matzke, Heavy ion induced damage in MgAl2O4, an inert matrix candidate for
    the transmutation of minor actinides. Radiat. Meas. 31 (1–6), 507–514 (1999).

  26. K. Yasuda, C. Kinoshita, and R. Morisaki, Role of irradiation spectrum in the microstructural
    evolution of magnesium aluminate spinel. Philos. Mag. A-Phys. Condens. Matter Struct. Defects
    Mechani. Properties, 78 (3), 583–598 (1998).

  27. A.A. El-Kheshen, and M.F. Zawrah, Sinterability, microstructure and properties of glass/ceramic
    composites.Ceram. Int. 29 (3), 251–257 (2003).

  28. A.M. Alper, et al., The system MgO-MgAl2O4. J. Am. Ceram. Soc. 45 (6), 263–268 (1962).

  29. M. Ishimaru, et al., Atomistic structures of metastable and amorphous phases in ion-irradiated
    magnesium aluminate spinel. J. Phys.-Condens. Matter 14 (6), 1237–1247 (2002).

Free download pdf