CHAPTER 9 MIXTURES
9.3 GASMIXTURES 244
Table 9.1 Gas mixture: expressions for differences between partial molar and stan-
dard molar quantities of constituentiGeneral expression Equation of statea
Difference at pressurep^0 VDnRT=pCnBi i(g) RTlnpi^0
p
CZp 00
Vi
RT
p
dp RTln
pi
p
CB^0 ipSi Si(g) Rlnp^0 i
p
Zp 00"
@Vi
@Tp
R
p#
dp Rln
pi
p
pdB^0 i
dTHi Hi(g)Zp 00"
Vi T
@Vi
@Tp#
dp p
Bi^0 TdBi^0
dTUi Ui(g)Zp 00"
Vi T
@Vi
@Tp#
dpCRT p^0 Vi pTdBi^0
dTCp;i Cp;i(g) Zp 00T
@^2 Vi
@T^2pdp pTd^2 Bi^0
dT^2
aBandB 0
iare defined by Eqs.9.3.24and9.3.26At low to moderate pressures, the simple equation of stateV=nDRT
pCB (9.3.21)
describes a gas mixture to a sufficiently high degree of accuracy (see Eq.2.2.8on page 35 ).
This is equivalent to a compression factor given by
Z defDpV
nRTD 1 C
Bp
RT(9.3.22)
From statistical mechanical theory, the dependence of the second virial coefficientBof
a binary gas mixture on the mole fraction composition is given by
BDyA^2 BAAC2yAyBBABCyB^2 BBB (9.3.23)
(binary gas mixture)whereBAAandBBBare the second virial coefficients of pure A and B, andBABis a mixed
second virial coefficient.BAA,BBB, andBABare functions ofTonly. For a gas mixture
with any number of constituents, the composition dependence ofBis given by
BDX
iX
jyiyjBij (9.3.24)
(gas mixture,BijDBji)HereBijis the second virial ofiifiandjare the same, or a mixed second virial coefficient
ifiandjare different.
If a gas mixture obeys the equation of state of Eq.9.3.21, the partial molar volume of
constituentiis given by
ViDRT
pCB^0 i (9.3.25)