9.4 Proof of the Main Theorem 177Proof.Letε>0andtakec 0 as in Lemma 9.4.9 i.e.
Q
[(∑
λiKci·M)∗
>ε]
<εfor all (λ 1 ...λn) convex combination and allc ≥c 0. By enlargingc 0 we
also may suppose that supn‖(Kcn·S)∗‖L^2 (Q) ≤ ε 3 (see the proof of the
Lemma 9.4.9). Corollary 9.2.4 now implies that for allnand every stopping
timeσ
‖∆(Kcn·M)σ‖L (^2) (Q)≤ε.
Take nowhpredictable and bounded by 1, takec≥c 0 ,λ 1 ...λnaconvex
combination. Defineσas
σ=inf
{
t∣
∣
∣
∣
∣
∣
∣
∣
∣
(n
∑i=1λi(Kci·M)t)∣
∣
∣
∣
∣
>ε}
.
The following estimate holds:sup
t≤σ∣
∣
∣
∣
∣
(n
∑i=1λiKic)
·M
∣ ∣ ∣ ∣ ∣ t
≤ε+∑
λi∣
∣∆(Kci·M)σ∣
∣.
TheL^2 -norm of the left hand side is therefore smaller than 2εand we have
anL^2 -martingale. This implies that the martingale
(
h∑
λiKci)
(^1) [[ 0,σ]]·Mis
inL^2 and its norm is smaller than 2ε. Hence
Q
[((
h∑
λiKci)
·M
)∗
>
√
ε]
≤Q
[((
h∑
λiKci)
(^1) [[ 0,σ]]·M
)∗
>
√
ε]
+Q[σ<∞]≤
4 ε^2
ε
+ε=5ε. Lemma 9.4.11.There is a sequence of convex combinationsLn∈conv{Hk,k≥
n}such that(Ln·M)converges in the semi-martingale topology.
Proof.We use the notation introduced before Lemma 9.4.9. Forε=^1 nwe
apply Lemma 9.4.10 to findcnsuch that
D
((m
∑i=1λiKcin)
·M
)
≤
1
nfor all convex weightsλ 1 ...λm.For eachnand eachkwe have (Hk (^1) [[ 0,Tckn]]·M)∗≤cn+|∆(Hk·M)Tckn|and
an application of Corollary 9.2.4 yields that eachHk (^1) [[ 0,Tckn]]·Mis anL^2 (Q)-
martingale with boundcn+3‖q‖L (^2) (Q). A standard diagonalisation argument
shows the existence of convex weightsλk 0 ,λk 1 ,...,λkNk, such that