2.5 Change of Num ́eraire 29V. It suffices to show that, for a one-dimensional predictable processL,the
quantitiesLt∆Vtare inK(S). This is easy, since
Lt∆Vt=Lt(
Ht^0 ,∆St)
=
(
LtH^0 t,∆St)
∈K(S)
by definition ofK(S). This shows thatK(Sext)=K(S).
Lemma 2.5.2.Fix 0 ≤t≤T,andletf∈K(S)=K(Sext)beFt-measurable.
Then the random variableVftis of the form f
′
VT wheref′∈K(S).
Proof.Clearly
f
Vt−
f
VT=
1
VT
(
fVT−Vt
Vt)
=
1
VT
∑T
s=t+1f
Vt(Vs−Vs− 1 ).We see thatf′′=
∑T
s=t+1f
Vt(Vs−Vs−^1 ) belongs toK(Sext) because f
Vt is
Ft-measurable and the summation is ons>t. Hencef′=f′′+fdoes the
job.
Proposition 2.5.3.Assume thatXis defined as in (2.10). Then
K(X)=
{
f
VT∣
∣
∣
∣f∈K(S)}
.
Proof.We have thatg∈K(X) if and only if there is a (d+1)-dimensional pre-
dictable processH,withg=
∑T
t=1(Ht,∆Xt)=∑T
t=1∑d+1
j=1Hj
t∆Xj
t. Clearly,
forj=1,...,dandt=1,...,T,
∆Xjt=(
Stj
Vt−
Stj− 1
Vt− 1)
=
∆Stj
Vt+Stj− 1(
1
Vt−
1
Vt− 1)
=
∆Stj
Vt−
Stj− 1
Vt− 1∆Vt
Vt=1
Vt(
∆Stj−Xtj− 1 ∆Vt)
.
So we get thatHtj∆Xtj = V^1 t
(
Htj∆Stj−(
HtjXtj− 1)
∆Vt)
,whichisoftheformVftfor somef∈K(Sext)=K(S). Forj=d+1 andt=1,...,Tthe
same argument applies by replacingStjandStj− 1 by 1.
By the previous lemma we haveVft=f′
VT for somef′∈K(S). This showsthatK(X)⊂V^1 TK(S).