Introduction to trigonometry 99
(vi) cotangentθ=adjacent side
opposite sidei.e. cotθ=a
bc
baFigure 11.6
(b) From above,(i)sinθ
cosθ=b
c
a
c=b
a=tanθ,i.e. tanθ=sinθ
cosθ(ii)cosθ
sinθ=a
c
b
c=a
b=cotθ,i.e. cotθ=cosθ
sinθ(iii) secθ=1
cosθ(iv) cosecθ=1
sinθ
(Note ‘s’and‘c’ go together)(v) cotθ=1
tanθ
Secants, cosecants and cotangents are called the
reciprocal ratios.
Problem 3. If cosX=9
41determine the value of
the other five trigonometry ratios.Fig. 11.7 shows a right-angled triangleXY Z.
YZX 941Figure 11.7
Since cosX=9
41,thenXY=9 units and
XZ=41 units.
Using Pythagoras’ theorem: 41^2 = 92 +YZ^2 from
whichYZ=√
( 412 − 92 )=40 units.
ThussinX=40
41,tanX=40
9= 44
9,cosecX=41
40= 11
40,secX=41
9= 45
9andcotX=9
40
Problem 4. If sinθ= 0 .625 and cosθ= 0. 500
determine, without using trigonometric tables or
calculators, the values of cosecθ,secθ,tanθ
and cotθ.cosecθ=1
sinθ=1
0. 625=1.60secθ=1
cosθ=1
0. 500=2.00tanθ=sinθ
cosθ=0. 625
0. 500=1.25cotθ=cosθ
sinθ=0. 500
0. 625=0.80Problem 5. PointAlies at co-ordinate (2, 3) and
pointBat (8, 7). Determine (a) the distanceAB,
(b) the gradient of the straight lineAB, and (c) the
angleABmakes with the horizontal.(a) PointsAandBare shown in Fig. 11.8(a).
In Fig. 11.8(b), the horizontal and vertical lines
ACandBCare constructed.
Since ABC is a right-angled triangle, and
AC=( 8 − 2 )=6andBC=( 7 − 3 )=4, then by
Pythagoras’ theoremAB^2 =AC^2 +BC^2 = 62 + 42
and AB=√
( 62 + 42 )=√
52 =7.211,
correct to 3 decimal places.
(b) The gradient ofABisgivenbytanA,i.e.gradient=tanA=BC
AC=4
6=2
3(c) TheangleABmakeswiththehorizontalisgiven
by tan−^123 =33.69◦.