Introduction to trigonometry 103
(c) cot−^12. 1273 =tan−^1(
1
2. 1273)=tan−^10. 4700 ...=25.18◦or 25 ◦ 11 ′or0.439radiansProblem 18. Evaluate the following expression,
correct to 4 significant figures:4sec32◦ 10 ′−2cot 15◦ 19 ′
3cosec 63◦ 8 ′tan14◦ 57 ′By calculator:
sec32◦ 10 ′= 1. 1813 ,cot15◦ 19 ′= 3. 6512cosec 63◦ 8 ′= 1. 1210 ,tan14◦ 57 ′= 0. 2670Hence4sec32◦ 10 ′−2cot15◦ 19 ′
3cosec 63◦ 8 ′tan14◦ 57 ′=4 ( 1. 1813 )− 2 ( 3. 6512 )
3 ( 1. 1210 )( 0. 2670 )=4. 7252 − 7. 3024
0. 8979=− 2. 5772
0. 8979=−2.870,correct to 4 significant figures.Problem 19. Evaluate correct to 4 decimal places:
(a) sec(− 115 ◦) (b) cosec(− 95 ◦ 47 ′)(a) Positive angles are considered by convention to be
anticlockwise and negative angles as clockwise.
Hence− 115 ◦is actually the same as 245◦(i.e.
360 ◦− 115 ◦)Hence sec(− 115 ◦)=sec245◦=1
cos245◦
=−2.3662(b) cosec(− 95 ◦ 47 ′)=1sin(
− 9547 ◦
60)=−1.0051Problem 20. In triangleEFGin Fig. 11.11,
calculate angleG.2.308.71FEG
Figure 11.11With reference to∠G, the two sides of the triangle
given are the opposite sideEFand the hypotenuse
EG; hence, sine is used,i.e. sinG=2. 30
8. 71= 0. 26406429 ...from which, G=sin−^10. 26406429 ...i.e. G= 15. 311360 ...Hence, ∠G= 15. 31 ◦or 15 ◦ 19 ′Now try the following exerciseExercise 46 Further problemson
evaluating trigonometric ratiosIn Problems 1 to 8, evaluate correct to 4 decimal
places:- (a) sine 27◦ (b) sine 172. 41 ◦
(c) sine 302◦ 52 ′[
(a) 0. 4540 (b) 0. 1321
(c)− 0. 8399 
]- (a) cosine124◦ (b) cosine21. 46 ◦
 
(c) cosine284◦ (^10) [′
(a)− 0. 5592 (b) 0. 9307
(c) 0. 2447
]
- (a) tangent145◦ (b) tangent310. 59 ◦
(c) tangent49[◦ 16 ′
(a)− 0. 7002 (b)− 1. 1671
(c) 1. 1612 
]- (a) secant 73◦ (b) secant 286. 45 ◦
 
(c) secant 155◦ (^41) [′
(a) 3. 4203 (b) 3. 5313
(c)− 1. 0974
]