Introduction to trigonometry 105
- Evaluate correct to 5 significant figures:
(a) cosec(− 143 ◦) (b) cot(− 252 ◦)
(c) sec(− 67 ◦[ 22 ′)
(a)− 1. 6616 (b)− 0. 32492
(c) 2. 5985
]11.5 Solution of right-angled triangles
To ‘solve a right-angled triangle’ means ‘to find the
unknown sides and angles’. This is achieved by using
(i) the theorem of Pythagoras, and/or (ii) trigonometric
ratios. This is demonstrated in the following problems.
Problem 21. In trianglePQRshown in
Fig. 11.14, find the lengths ofPQandPR.Q RP7.5 cm388Figure 11.14tan38◦=PQ
QR=PQ
7. 5hence PQ=^7 .5tan38◦=^7.^5 (^0.^7813 )
=5.860cmcos38◦=QR
PR=7. 5
PRhence PR=
7. 5
cos38◦
=7. 5
0. 7880=9.518cm[Check: Using Pythagoras’ theorem
( 7. 5 )^2 +( 5. 860 )^2 = 90. 59 =( 9. 518 )^2 ]Problem 22. Solve the triangleABCshown in
Fig. 11.15.ACB37 mm35 mmFigure 11.15To ‘solve triangleABC’ means ‘to find the length
ACand anglesBandC’sinC=35
37= 0. 94595hence∠C=sin−^10. 94595 = 71. 08 ◦= 71 ◦ 5 ′.
∠B= 180 ◦− 90 ◦− 71 ◦ 5 ′= 18 ◦ 55 ′ (since angles in a
triangle add up to 180◦)sinB=AC
37
hence AC=37sin18◦ 55 ′= 37 ( 0. 3242 )=12.0mmor, using Pythagoras’ theorem, 37^2 = 352 +AC^2 , from
which,AC=√
( 372 − 352 )=12.0mm.Problem 23. Solve triangleXYZgiven
∠X= 90 ◦,∠Y= 23 ◦ 17 ′andYZ= 20 .0mm.
Determine also its area.It is always advisable to make a reasonably accurate
sketch so as to visualize the expected magnitudes of
unknown sides and angles. Such a sketch is shown in
Fig. 11.16.∠Z= 180 ◦− 90 ◦− 23 ◦ 17 ′= 66 ◦ 43 ′sin23◦ 17 ′=XZ
20. 0X YZ
20.0mm238179Figure 11.16hence XZ= 20 .0sin23◦ 17 ′= 20. 0 ( 0. 3953 )=7.906mmcos23◦ 17 ′=XY
20. 0
hence XY= 20 .0cos23◦ 17 ′= 20. 0 ( 0. 9186 )=18.37mm[Check: Using Pythagoras’ theorem
(18.37)^2 +( 7. 906 )^2 = 400. 0 =( 20. 0 )^2 ]