114 Higher Engineering Mathematics
44848830.0 mDCBAFigure 11.36For triangleABC, using Pythagoras’ theorem:BC^2 =AB^2 +AC^2
(
DC
tan44◦) 2
=( 30. 0 )^2 +(
DC
tan48◦) 2DC^2(
1
tan^244 ◦−1
tan^248 ◦)
= 30. 02DC^2 ( 1. 072323 − 0. 810727 )= 30. 02DC^2 =30. 02
0. 261596= 3440. 4Hence, height of aerial,DC=√
3440.4=58.65mProblem 35. A crank mechanism of a petrol
engine is shown in Fig. 11.37. ArmOAis 10.0cm
long and rotates clockwise about O. The connecting
rodABis 30.0cm long and endBis constrained to
move horizontally.30.0 cmABO10.0 cm
508Figure 11.37(a) For the position shown in Fig. 11.37 determine
the angle between the connecting rodABand
the horizontal and the length ofOB.
(b) How far doesBmove when angleAOB
changes from 50◦to 120◦?(a) Applying the sine rule:
AB
sin50◦=AO
sinBfrom which,sinB=AOsin50◦
AB=10 .0sin50◦
30. 0
= 0. 2553
Hence B=sin−^10. 2553 = 14 ◦ 47 ′ (or 165◦ 13 ′,
which is impossible in this case).
Hence the connecting rodABmakes an angle
of 14◦ 47 ′with the horizontal.
AngleOAB= 180 ◦− 50 ◦− 14 ◦ 47 ′= 115 ◦ 13 ′.
Applying the sine rule:
30. 0
sin50◦=OB
sin115◦ 13 ′
from which,OB=30 .0sin115◦ 13 ′
sin50◦=35.43cm(b) Figure11.38showstheinitial andfinalpositionsof
thecrank mechanism.In triangleOA′B′, applying
the sine rule:
30. 0
sin120◦=10. 0
sinA′B′O
from which,sinA′B′O=10 .0sin120◦
30. 0= 0. 2887A ABB O50 30.0 cm10.0 cm120 Figure 11.38Hence A′B′O=sin−^10. 2887 = 16 ◦ 47 ′ (or 163◦ 13 ′
which is impossible in this case).