124 Higher Engineering Mathematics
When s= whole circumference (= 2 πr) then
θ=s
r=2 πr
r= 2 π
i.e. 2 πradians= 360 ◦ or πradians= 180 ◦
Thus, 1rad=180 ◦
π= 57. 30 ◦, correct to 2 decimal
places.
Sinceπrad= 180 ◦,thenπ
2= 90 ◦,π
3= 60 ◦,π
4= 45 ◦,
and so on.Problem 3. Convert to radians: (a) 125◦
(b) 69◦ 47 ′.(a) Since 180◦=πrad then1◦=π/180rad, therefore125 ◦= 125( π
180)c
=2.182 rad(Note thatcmeans ‘circular measure’ and indi-
cates radian measure.)(b) 69◦ 47 ′= 6947 ◦
60= 69. 783 ◦69. 783 ◦= 69. 783( π
180)c
=1.218radProblem 4. Convert to degrees and minutes:
(a) 0.749 rad (b) 3π/4 rad.(a) Sinceπrad= 180 ◦then1rad= 180 ◦/π, therefore0. 749 = 0. 749(
180
π)◦
= 42. 915 ◦0. 915 ◦=( 0. 915 × 60 )′= 55 ′, correct to the near-
est minute, hence0 .749 rad= 42 ◦ 55 ′(b) Since 1 rad=(
180
π)◦
then3 π
4rad=3 π
4(
180
π)◦
=3
4( 180 )◦= 135 ◦Problem 5. Express in radians, in terms ofπ,
(a) 150◦(b) 270◦(c) 37.5◦.Since 180◦=πrad then 1◦= 180 /π, hence(a) 150◦= 150( π
180)
rad=5 π
6rad(b) 270◦= 270( π
180)
rad=
3 π
2rad(c) 37. 5 ◦= 37. 5(π
180)
rad=75 π
360rad=5 π
24radNow try the following exerciseExercise 56 Further problems on radians
and degrees- Convert to radians in terms ofπ:(a)30◦
(b) 75◦(c) 225◦.[
(a)π
6(b)5 π
12(c)5 π
4]- Convert to radians: (a) 48◦ (b) 84◦ 51 ′
(c) 232◦ 15 ′.
[(a) 0.838 (b) 1.481 (c) 4.054] - Convert to degrees: (a)
5 π
6rad (b)4 π
9rad(c)7 π
12rad. [(a) 150◦(b) 80◦(c) 105◦]- Convert to degrees and minutes: (a) 0.0125rad
(b) 2.69rad (c) 7.241rad.
[(a) 0◦ 43 ′(b) 154◦ 8 ′(c) 414◦ 53 ′]
13.4 Arc length and area of circles and sectors
Arc length
From the definition of the radian in the previous section
and Fig. 13.7,arc length,s=rθ whereθis in radiansArea of circle
For any circle, area=π×(radius)^2i.e. area=πr^2Sincer=d
2,thenarea=πr^2 orπd^2
4