128 Higher Engineering Mathematics
5
42024 xyr^5
2b 53a 52Figure 13.14Comparing this with equation (2) gives:2 e=− 2 a,i.e.a=−2 e
2and 2f=− 2 b,i.e.b=−2 f
2
and c=a^2 +b^2 −r^2 ,
i.e., r=√
(a^2 +b^2 −c)Thus, for example, the equation
x^2 +y^2 − 4 x− 6 y+ 9 = 0represents a circle with centre a=−(
− 4
2)
,b=−(
− 6
2)
,i.e.at(2,3)andradiusr=√
( 22 + 32 − 9 )=2.
Hencex^2 +y^2 − 4 x− 6 y+ 9 =0isthecircleshownin
Fig. 13.14 (which may be checked by multiplying out
the brackets in the equation
(x− 2 )^2 +(y− 3 )^2 = 4Problem 16. Determine (a) the radius, and (b) the
co-ordinates of the centre of the circle given by the
equation:x^2 +y^2 + 8 x− 2 y+ 8 =0.x^2 +y^2 + 8 x− 2 y+ 8 =0isoftheformshowninequa-
tion (2),wherea=−(
8
2)
=− 4 ,b=−(
− 2
2)
= 1and r=√
[(− 4 )^2 +( 1 )^2 −8]=√
9 = 3Hencex^2 +y^2 + 8 x− 2 y+ 8 =0 represents acirclecen-
tre (−4, 1)andradius 3, as shown in Fig. 13.15.a 524b 51
2224y28026 24r^53xFigure 13.15Alternatively,x^2 +y^2 + 8 x− 2 y+ 8 =0 may be rear-
ranged as:
(x+ 4 )^2 +(y− 1 )^2 − 9 = 0i.e.(x+ 4 )^2 +(y− 1 )^2 = 32which represents a circle,centre (−4, 1)andradius 3,
as stated above.Problem 17. Sketch the circle given by the
equation:x^2 +y^2 − 4 x+ 6 y− 3 =0.The equation of a circle, centre (a, b), radiusr is
given by:
(x−a)^2 +(y−b)^2 =r^2
The general equation of a circle isx^2 +y^2 + 2 ex+ 2 fy+c= 0.From abovea=−2 e
2,b=−2 f
2andr=√
(a^2 +b^2 −c).Hence ifx^2 +y^2 − 4 x+ 6 y− 3 = 0then a=−(
− 4
2)
= 2 , b=−(
6
2)
=− 3and r=√
[( 2 )^2 +(− 3 )^2 −(− 3 )]
=√
16 = 4Thusthecirclehascentre(2,−3) and radius 4,as
shown in Fig. 13.16.
Alternatively,x^2 +y^2 − 4 x+ 6 y− 3 =0 may be rear-
ranged as:(x− 2 )^2 +(y+ 3 )^2 − 3 − 13 = 0
i.e.(x− 2 )^2 +(y+ 3 )^2 = 42