Trigonometric identities and equations 153
theright-handside(RHS)orvice-versa.It isoftenuseful
to change all of the trigonometric ratios into sines and
cosines where possible. Thus,
LHS=sin^2 θcotθsecθ=sin^2 θ(
cosθ
sinθ)(
1
cosθ)=sinθ(by cancelling)=RHSProblem 2. Prove that
tanx+secxsecx(
1 +tanx
secx)= 1.LHS=tanx+secxsecx(
1 +tanx
secx)=sinx
cosx+1
cosx
(
1
cosx)⎛
⎜
⎝^1 +sinx
cosx
1
cosx⎞
⎟
⎠=sinx+ 1
( cosx
1
cosx)[
1 +(
sinx
cosx)(
cosx
1)]=sinx+ 1
( cosx
1
cosx)
[1+sinx]=(
sinx+ 1
cosx)(
cosx
1 +sinx)=1(by cancelling)=RHSProblem 3. Prove that1 +cotθ
1 +tanθ=cotθ.LHS=1 +cotθ
1 +tanθ=1 +cosθ
sinθ
1 +sinθ
cosθ=sinθ+cosθ
sinθ
cosθ+sinθ
cosθ=(
sinθ+cosθ
sinθ)(
cosθ
cosθ+sinθ)=cosθ
sinθ=cotθ=RHSProblem 4. Show that
cos^2 θ−sin^2 θ= 1 −2sin^2 θ.From equation (2), cos^2 θ+sin^2 θ=1, from which,
cos^2 θ= 1 −sin^2 θ.Hence,LHS
=cos^2 θ−sin^2 θ=( 1 −sin^2 θ)−sin^2 θ
= 1 −sin^2 θ−sin^2 θ= 1 −2sin^2 θ=RHSProblem 5. Prove that
√(
1 −sinx
1 +sinx)
=secx−tanx.LHS=√(
1 −sinx
1 +sinx)
=√{
( 1 −sinx)( 1 −sinx)
( 1 +sinx)( 1 −sinx)}=√{
( 1 −sinx)^2
( 1 −sin^2 x)}Since cos^2 x+sin^2 x=1then1−sin^2 x=cos^2 xLHS=√{
( 1 −sinx)^2
( 1 −sin^2 x)}
=√{
( 1 −sinx)^2
cos^2 x}=1 −sinx
cosx=1
cosx−sinx
cosx
=secx−tanx=RHSNow try the following exerciseExercise 65 Further problemson
trigonometric identities
In Problems 1 to 6 prove the trigonometric
identities.- sinxcotx=cosx
2.1
√
( 1 −cos^2 θ)=cosecθ