Functions and their curves 179
The simplest example of a cubic graph,y=x^3 ,is
shown in Fig. 18.3.
8 y^5 x^3
6
4
222
24
26
28222112yxFigure 18.3
(iv) Trigonometric Functions (see Chapter 14,
page 134)
Graphs ofy=sinθ,y=cosθandy=tanθare shown in
Fig. 18.4.
y 5 sin y 5 cosy 5 tan1.02 1.02 1.00
2 23 2 2 2 1.00
2 23 (a)(b)(c)0
2 23 yyyFigure 18.4
(v) Circle(see Chapter 13, page 122)
The simplest equation of a circle is x^2 +y^2 =r^2 ,
with centre at the origin and radiusr,asshownin
Fig. 18.5.2 r2 r rrO xx^21 y^25 r^2yFigure 18.5Moregenerally, the equation of a circle, centre(a,b),
radiusr, is given by:
(x−a)^2 +(y−b)^2 =r^2Figure 18.6 shows a circle(x− 2 )^2 +(y− 3 )^2 = 40242345b 53a 52r^5
2(x 2 2)^21 (y 2 3)^254yxFigure 18.6(vi) Ellipse
The equation of an ellipse isx^2
a^2+
y^2
b^2= 1and the general shape is as shown in Fig. 18.7.
The lengthABis called themajor axisandCDthe
minor axis.