Irregular areas, volumes and mean values of waveforms 207
dd
by 1 y 2 y 3 y 4 y 5 y 6 y 7ydddd dFigure 19.6
If the mid-ordinate rule is used to find the area under the
curve, then:
y=sum of mid-ordinates
number of mid-ordinates
(
=y 1 +y 2 +y 3 +y 4 +y 5 +y 6 +y 7
7for Fig. 19.6)For asine wave, the mean or average value:
(i) over one complete cycle is zero (see Fig. 19.7(a)),V
Vm0(a)ttV
Vm0(b)V
Vm0(c)tFigure 19.7
(ii) over half a cycle is0.637×maximum value,or
( 2 /π)×maximum value,
(iii) of a full-wave rectified waveform (see Fig.
19.7(b)) is0.637×maximum value,(iv) of a half-wave rectified waveform (see
Fig. 19.7(c)) is 0.318×maximum value,or
( 1 /π)maximum value.Problem 5. Determine the average values over
half a cycle of the periodic waveforms shown in
Fig. 19.8.0123421020Voltage (V)(a)t(ms)0
21
22
231234563
2
1
Current (A)(b)t(s)0210246810Voltage (V)(c)t(ms)Figure 19.8(a) Areaundertriangularwaveform(a)forahalfcycle
is given by:
Area=^12 (base) (perpendicular height)=^12 ( 2 × 10 −^3 )( 20 )= 20 × 10 −^3 VsAverage value of waveform=area under curve
length of base=20 × 10 −^3 Vs
2 × 10 −^3 s
=10V