218 Higher Engineering Mathematics
(b) ( 1 +j 2 )(− 2 −j 3 )=a+jb
− 2 −j 3 −j 4 −j^26 =a+jb
Hence 4−j 7 =a+jb
Equating real and imaginary terms gives:a= 4 andb=− 7Problem 8. Solve the equations:
(a) ( 2 −j 3 )=√
(a+jb)
(b) (x−j 2 y)+(y−j 3 x)= 2 +j 3(a) ( 2 −j 3 )=√
(a+jb)Hence ( 2 −j 3 )^2 =a+jb,i.e. ( 2 −j 3 )( 2 −j 3 )=a+jbHence 4−j 6 −j 6 +j^29 =a+jband − 5 −j 12 =a+jbThusa=− 5 andb=− 12(b) (x−j 2 y)+(y−j 3 x)= 2 +j 3Hence(x+y)+j(− 2 y− 3 x)= 2 +j 3Equating real and imaginary parts gives:x+y=2(1)and− 3 x− 2 y=3(2)i.e. two simultaneous equations to solve.Multiplying equation (1) by 2 gives:
2 x+ 2 y=4(3)Adding equations (2) and (3) gives:
−x= 7 ,i.e.,x=− 7From equation (1),y= 9 ,which may be checked
inequation (2).Now try the following exerciseExercise 87 Further problems on complex
equations
In Problems 1 to 4 solve the complex equations.- ( 2 +j)( 3 −j 2 )=a+jb [a= 8 ,b=−1]
2.2 +j
1 −j=j(x+jy)[
x=3
2,y=−1
2]- ( 2 −j 3 )=
√
(a+jb) [a=− 5 ,b=−12]- (x−j 2 y)−(y−jx)= 2 +j [x= 3 ,y=1]
- If Z=R+jωL+ 1 /jωC, express Z in
(a+jb)form whenR=10,L=5,C= 0. 04
andω=4. [Z= 10 +j 13 .75]
20.6 The polar form of a complex number
(i) Let a complex numberzbex+jyas shown in
the Argand diagram of Fig. 20.4. Let distance
OZberand the angleOZmakes with thepositive
real axis beθ.From trigonometry, x=rcosθandy=rsinθHence Z=x+jy =rcosθ+jrsinθ=r(cosθ+jsinθ)Z=r(cosθ+jsinθ) is usually abbreviated to
Z=r∠θwhich is known as thepolar formof
a complex number.Real axisImaginary
axis
Zx ArOjyFigure 20.4(ii) ris called themodulus(or magnitude) ofZand
is written as modZor|Z|.
ris determined using Pythagoras’ theorem on
triangleOAZin Fig. 20.4,i.e. r=√
(x^2 +y^2 )