220 Higher Engineering Mathematics
(a)(b)Real axis40308Imaginary
axisxjy Real axis
7 1458xjyFigure 20.7Using trigonometric ratios,x=4cos30◦= 3. 464
andy=4sin30◦= 2 .000.
Hence 4∠ 30 ◦= 3. 464 +j 2. 000
(b) 7∠ 145 ◦is shown in Fig. 20.7(b) and lies in the
third quadrant.
Angleα= 180 ◦− 145 ◦= 35 ◦
Hence x=7cos35◦= 5. 734
and y=7sin35◦= 4. 015
Hence 7∠− 145 ◦=− 5. 734 −j 4. 015
Alternatively
7 ∠− 145 ◦=7cos(− 145 ◦)+j7sin(− 145 ◦)
=− 5. 734 −j 4. 015Calculator
Using the ‘Pol’and‘Rec’ functions on a calculator
enables changing from Cartesian to polar and vice-versa
to be achieved more quickly.
Since complex numbers are used with vectors and
with electrical engineering a.c. theory, it is essential that
the calculator can be used quickly and accurately.20.7 Multiplication and division in polar form
IfZ 1 =r 1 ∠θ 1 andZ 2 =r 2 ∠θ 2 then:
(i) Z 1 Z 2 =r 1 r 2 ∠(θ 1 +θ 2 )and(ii)Z 1
Z 2=r 1
r 2∠(θ 1 −θ 2 )Problem 12. Determine, in polar form:
(a) 8∠ 25 ◦× 4 ∠ 60 ◦
(b) 3∠ 16 ◦× 5 ∠− 44 ◦× 2 ∠ 80 ◦(a) 8∠ 25 ◦× 4 ∠ 60 ◦=( 8 × 4 )∠( 25 ◦+ 60 ◦)= 32 ∠ 85 ◦(b) 3∠ 16 ◦× 5 ∠− 44 ◦× 2 ∠ 80 ◦
=( 3 × 5 × 2 )∠[16◦+(− 44 ◦)+ 80 ◦]= 30 ∠ 52 ◦Problem 13. Evaluate in polar form(a)16 ∠ 75 ◦
2 ∠ 15 ◦(b)10 ∠π
4× 12 ∠π
2
6 ∠−π
3(a)16 ∠ 75 ◦
2 ∠ 15 ◦=16
2∠( 75 ◦− 15 ◦)= 8 ∠ 60 ◦(b)10 ∠π
4× 12 ∠π
2
6 ∠−π
3=10 × 12
6∠(π
4+π
2−(
−π
3))= 20 ∠13 π
12or 20 ∠−11 π
12or20 ∠ 195 ◦or 20 ∠− 165 ◦Problem 14. Evaluate, in polar form
2 ∠ 30 ◦+ 5 ∠− 45 ◦− 4 ∠ 120 ◦.Addition and subtraction in polar form is not possible
directly. Each complex number has to be converted into
cartesian form first.2 ∠ 30 ◦= 2 (cos 30◦+jsin30◦)=2cos30◦+j2sin30◦= 1. 732 +j 1. 0005 ∠− 45 ◦= 5 (cos(− 45 ◦)+jsin(− 45 ◦))=5cos(− 45 ◦)+j5sin(− 45 ◦)= 3. 536 −j 3. 5364 ∠ 120 ◦= 4 (cos 120◦+jsin120◦)=4cos120◦+j4sin120◦=− 2. 000 +j 3. 464Hence 2∠ 30 ◦+ 5 ∠− 45 ◦− 4 ∠ 120 ◦