Algebra 5
5 ×equation (1) gives:
35 x− 10 y= 130 (3)2 ×equation (2) gives:
12 x+ 10 y= 58 (4)equation (3)+equation (4) gives:
47 x+ 0 = 188from which, x=
188
47= 4Substitutingx=4 in equation (1) gives:
28 − 2 y= 26from which, 28− 26 = 2 yandy= 1
Problem 19. Solve
x
8+5
2=y (1)11 +y
3= 3 x. (2)8 ×equation (1) gives: x+ 20 = 8 y (3)
3 ×equation (2) gives: 33+y= 9 x (4)
i.e. x− 8 y=− 20 (5)
and 9 x−y= 33 (6)
8 ×equation (6) gives: 72x− 8 y= 264 (7)
Equation (7)−equation (5) gives:
71 x= 284from which, x=
284
71= 4Substitutingx=4 in equation (5) gives:
4 − 8 y=− 20from which, 4 + 20 = 8 yandy= 3
(d) Quadratic equations
Problem 20. Solve the following equations by
factorization:
(a) 3x^2 − 11 x− 4 = 0
(b) 4x^2 + 8 x+ 3 =0.(a) Thefactorsof3x^2 are3xandxand theseareplaced
in brackets thus:
( 3 x )(x )
The factors of−4are+1and−4or−1and
+4, or−2and+2. Remembering that the prod-
uct of the two inner terms added to the product
of the two outer terms must equal− 11 x, the only
combination to give this is+1and−4, i.e.,3 x^2 − 11 x− 4 =( 3 x+ 1 )(x− 4 )Thus ( 3 x+ 1 )(x− 4 )=0 henceeither ( 3 x+ 1 )=0i.e.x=−^13or (x− 4 )=0i.e.x= 4(b) 4x^2 + 8 x+ 3 =( 2 x+ 3 )( 2 x+ 1 )Thus ( 2 x+ 3 )( 2 x+ 1 )=0 henceeither ( 2 x+ 3 )=0i.e.x=−^32or ( 2 x+ 1 )=0i.e.x=−^12Problem 21. The roots of a quadratic equation
are^13 and−2. Determine the equation inx.If^13 and−2 are the roots of a quadratic equation then,
(x−^13 )(x+ 2 )= 0i.e. x^2 + 2 x−^13 x−^23 = 0
i.e. x^2 +^53 x−^23 = 0or 3 x^2 + 5 x− 2 = 0Problem 22. Solve 4x^2 + 7 x+ 2 =0givingthe
answer correct to 2 decimal places.From the quadratic formula ifax^2 +bx+c=0 then,x=−b±√
b^2 − 4 ac
2 a
Hence if 4x^2 + 7 x+ 2 = 0then x=− 7 ±√
72 − 4 ( 4 )( 2 )
2 ( 4 )=− 7 ±√
17
8
=− 7 ± 4. 123
8
=− 7 + 4. 123
8or− 7 − 4. 123
8
i.e. x=−0.36 or −1.39