222 Higher Engineering Mathematics
Similarly, for theR−Ccircuit shown in Fig. 20.8(b),
VC lags I by 90◦ (i.e. I leads VC by 90◦)and
VR−jVC=V, from whichR−jXC=Z(whereXC
is the capacitive reactance1
2 πfCohms).Problem 15. Determine the resistance and
series inductance (or capacitance) foreach of the
following impedances, assuming a frequency of
50Hz:
(a)( 4. 0 +j 7. 0 ) (b)−j 20
(c) 15∠− 60 ◦(a) Impedance,Z=( 4. 0 +j 7. 0 )hence,
resistance= 4. 0 and reactance= 7. 00 .
Since the imaginary part is positive, the reactance
is inductive,
i.e.XL= 7. 0
SinceXL= 2 πfLtheninductance,L=XL
2 πf=7. 0
2 π( 50 )= 0 .0223Hor 22 .3mH(b) Impedance,Z=j20, i.e.Z=( 0 −j 20 )hence
resistance= 0 and reactance= 20 . Since the
imaginary part is negative, the reactance is cap-
acitive, i.e., XC= 20 and since XC=1
2 πfC
then:capacitance,C=1
2 πfXC=1
2 π( 50 )( 20 )F=106
2 π( 50 )( 20 )μF= 159. 2 μF(c) Impedance,Z= 15 ∠− 60 ◦=15[cos(− 60 ◦)+jsin(− 60 ◦)]= 7. 50 −j 12. 99 Henceresistance= 7. 50 and capacitive reac-
tance,XC= 12. 99 SinceXC=1
2 πfCthencapacitance,C=1
2 πfXC=106
2 π( 50 )( 12. 99 )μF= 245 μFProblem 16. An alternating voltage of 240V,
50Hz is connected across an impedance of
( 60 −j 100 ). Determine (a) the resistance (b) the
capacitance (c) the magnitude of the impedance and
its phase angle and (d) the current flowing.(a) ImpedanceZ=( 60 −j 100 ).Henceresistance= 60
(b) Capacitive reactance XC= 100 and since
XC=1
2 πfCthencapacitance,C=1
2 πfXC=1
2 π( 50 )( 100 )=106
2 π( 50 )( 100 )μF= 31. 83 μF
(c) Magnitude of impedance,|Z|=√
[( 60 )^2 +(− 100 )^2 ]= 116. 6 Phase angle, argZ=tan−^1(
− 100
60)
=− 59. 04 ◦(d) Current flowing,I=V
Z=240 ∠ 0 ◦
116. 6 ∠− 59. 04 ◦= 2. 058 ∠ 59. 04 ◦A
The circuit and phasor diagrams are as shown in
Fig. 20.8(b).Problem 17. For the parallel circuit shown in
Fig. 20.9, determine the value of currentIand its
phase relative to the 240V supply, using complex
numbers.240 V, 50 HzR 3512 V XC 55 V
IR 2510 VR 154 V XL 53 VFigure 20.9