236 Higher Engineering Mathematics
∣
∣
∣
∣5 ∠ 30 ◦ 2 ∠− 60 ◦
3 ∠ 60 ◦ 4 ∠− 90 ◦∣
∣
∣
∣=(^5 ∠^30◦)( 4 ∠− 90 ◦)−( 2 ∠− 60 ◦)( 3 ∠ 60 ◦)=( 20 ∠− 60 ◦)−( 6 ∠ 0 ◦)=( 10 −j 17. 32 )−( 6 +j 0 )=(4−j17.32)or17.78∠− 77 ◦Now try the following exerciseExercise 94 Further problems on 2 by 2
determinants- Calculate the determinant of
(
3 − 1
− 47)[17]- Calculate the determinant of(
− 25
3 − 6
)
[−3]- Calculate the determinant of(
− 1. 37. 4
2. 5 − 3. 9
)
[−13.43]- Evaluate
∣
∣
∣
∣j 2 −j 3
( 1 +j) j∣
∣
∣
∣ [−^5 +j3]- Evaluate
∣
∣
∣
∣
∣2 ∠ 40 ◦ 5 ∠− 20 ◦
7 ∠− 32 ◦ 4 ∠− 117 ◦∣ ∣ ∣ ∣ ∣ [(− 19. 75 +j 19. 79 )
or 27. 96 ∠ 134. 94 ◦]22.5 The inverse or reciprocal of a 2 by 2 matrix
The inverse of matrixAisA−^1 such thatA×A−^1 =I,
the unit matrix.
Let matrixAbe(
12
34)
and let the inverse matrix,A−^1be(
ab
cd)
.Then, sinceA×A−^1 =I,
(
12
34)
×(
ab
cd)
=(
10
01)Multiplying the matrices on the left hand side, gives
(
a+ 2 cb+ 2 d
3 a+ 4 c 3 b+ 4 d)
=(
10
01)Equating corresponding elements gives:b+ 2 d= 0 ,i.e.b=− 2 dand 3a+ 4 c= 0 ,i.e.a=−4
3c
Substituting foraandbgives:
⎛
⎜
⎜
⎜
⎝−4
3c+ 2 c − 2 d+ 2 d3(
−4
3c)
+ 4 c 3 (− 2 d)+ 4 d⎞
⎟
⎟
⎟
⎠=(
10
01)i.e.⎛
⎝2
3c 00 − 2 d⎞
⎠=(
10
01)showing that2
3c=1, i.e.c=3
2and− 2 d=1, i.e.d=−1
2
Sinceb=− 2 d,b=1 and sincea=−4
3c,a=−2.Thus the inverse of matrix(
12
34)
is(
ab
cd)
that is,
⎛
⎝− 21
3
2−1
2⎞
⎠There is, however,a quicker method of obtaining the
inverseof a 2 by 2 matrix.
For any matrix(
pq
rs)
the inverse may be
obtained by:
(i) interchanging the positions ofpands,
(ii) changing the signs ofqandr,and
(iii) multiplying this new matrix by the reciprocal of
the determinant of(
pq
rs)Thus the inverse of matrix(
12
34)
is1
4 − 6(
4 − 2
− 31)
=⎛
⎝− 21
3
2−1
2⎞
⎠as obtained previously.Problem 13. Determine the inverse of
(
3 − 2
74)