Methods of adding alternating waveforms 271
v 15 15 V(a) (b)v 25 25 V/6 or 30 8 
0vRv 2v 11508 308abcFigure 25.17
The horizontal component ofvR,
H=15cos0◦−25cos(− 30 ◦)=− 6 .65V
The vertical component ofvR,
V=15sin0◦−25sin(− 30 ◦)= 12 .50V
Hence,vR=√
(− 6. 65 )^2 +( 12. 50 )^2by Pythagoras’ theorem
=14.16 voltstanφ=V
H=12. 50
− 6. 65=− 1. 8797from which,φ=tan−^1 (− 1. 8797 )= 118. 01 ◦
or 2.06 radians.Hence,
vR=v 1 −v 2 = 14 .16sin(ωt+ 2. 06 )VThe phasor diagram is shown in Fig. 25.18.v 15 15 V2 v 25 25 Vv 25 25 VvR308308Figure 25.18
Problem 11. Determine
20sinωt+10sin(
ωt+π
3)
using horizontal and
vertical components.From the phasors shown in Fig. 25.19:
Total horizontal component,
H=20cos0◦+10cos60◦= 25. 0
i 15 20 Ai 25 10 A608Figure 25.19Total vertical component,
V=20sin0◦+10sin60◦= 8. 66
By Pythagoras, the resultant,iR=√[
25. 02 + 8. 662]= 26 .46APhase angle,φ=tan−^1(
8. 66
25. 0)
= 19. 11 ◦
or0.333 rad
Hence, by using horizontal and vertical components,20sinωt+10sin(
ωt+π
3)= 26 .46sin(ωt+ 0. (^333) )
Now try the following exercise
Exercise 110 Further problemson
resultant phasors by horizontal and vertical
components
In Problems 1 to 4, express the combination of
periodic functions in the formAsin(ωt±α)by
horizontal and vertical components:
- 7sinωt+5sin
 
(
ωt+π
4)[11.11sin(ωt+ 0. 324 )]- 6sinωt+3sin
 
(
ωt−π
6)[8.73sin(ωt− 0. 173 )]- i=25sinωt−15sin
 
(
ωt+π
3)[i= 21 .79sin(ωt− 0. 639 )]- x=9sin
 
(
ωt+π
3)
−7sin(
ωt−3 π
8)[x= 14 .38sin(ωt+ 1. 444 )]