278 Higher Engineering Mathematics
(i) From equation (2),if p=a 1 i+a 2 j+a 3 kand q=b 1 i+b 2 j+b 3 kthen p•q=a 1 b 1 +a 2 b 2 +a 3 b 3When p= 2 i+j−k,a 1 = 2 ,a 2 =1anda 3 =− 1and when q=i− 3 j+ 2 k,b 1 = 1 ,b 2 =−3andb 3 = 2Hence p•q=( 2 )( 1 )+( 1 )(− 3 )+(− 1 )( 2 )i.e. p•q=− 3(ii) p+q=( 2 i+j−k)+(i− 3 j+ 2 k)
= 3 i− 2 j+k(iii) |p+q|=| 3 i− 2 j+k|
From equation (3),|p+q|=√
[3^2 +(− 2 )^2 + 12 ]=√
14(iv) From equation (3),|p|=| 2 i+j−k|=√
[2^2 + 12 +(− 1 )^2 ]=√
6Similarly,|q|=|i− 3 j+ 2 k|=√
[1^2 +(− 3 )^2 + 22 ]=√
14Hence|p|+|q|=√
6 +√
14 =6.191, correct to 3
decimal places.Problem 4. Determine the angle between vectors
oaandobwhenoa=i+ 2 j− 3 kand ob= 2 i−j+ 4 k.An equation for cosθis given in equation (4)cosθ=a 1 b 1 +a 2 b 2 +a 3 b 3
√
(a 12 +a 22 +a 32 )√
(b 12 +b^22 +b^23 )Since oa=i+ 2 j− 3 k,a 1 = 1 ,a 2 =2anda 3 =− 3Since ob= 2 i−j+ 4 k,b 1 = 2 ,b 2 =−1andb 3 = 4Thus,cosθ=( 1 × 2 )+( 2 ×− 1 )+(− 3 × 4 )
√
( 12 + 22 +(− 3 )^2 )√
( 22 +(− 1 )^2 + 42 )=− 12
√
14√
21=− 0. 6999i.e.θ= 134. 4 ◦or 225. 6 ◦.By sketchingthe positionof the two vectors as shown in
Problem1,it will beseenthat 225.6◦is not an acceptable
answer.
Thus the angle between the vectors oa and ob,
θ=134.4◦Direction cosines
From Fig. 26.2, or=xi+yj+zk and from
equation (3),|or|=√
x^2 +y^2 +z^2.
Iformakes angles ofα,βandγwith the co-ordinate
axesi,jandkrespectively, then:
The direction cosines are:cosα=x
√
x^2 +y^2 +z^2cosβ=y
√
x^2 +y^2 +z^2and cosγ=y
√
x^2 +y^2 +z^2such that cos^2 α+cos^2 β+cos^2 γ=1.
The values of cosα,cosβand cosγare called the
direction cosinesofor.Problem 5. Find the direction cosines of
3 i+ 2 j+k.√
x^2 +y^2 +z^2 =√
32 + 22 + 12 =√
14