Methods of differentiation 293
Hencedy
dx=(x^3 cos3x)(
1
x)
+(lnx)[− 3 x^3 sin3x+ 3 x^2 cos3x]=x^2 cos3x+ 3 x^2 lnx(cos3x−xsin3x)i.e.
dy
dx=x^2 {cos3x+3lnx(cos 3x−xsin3x)}Problem 13. Determine the rate of change of
voltage, givenv= 5 tsin2tvolts whent= 0 .2s.Rate of change of voltage=
dv
dt
=( 5 t)(2cos2t)+(sin2t)( 5 )
= 10 tcos2t+5sin2tWhent= 0. 2 ,
dv
dt= 10 ( 0. 2 )cos2( 0. 2 )+5sin2( 0. 2 )=2cos0. 4 +5sin0.4(wherecos0. 4
means the cosine of 0.4 radians)Hence
dv
dt= 2 ( 0. 92106 )+ 5 ( 0. 38942 )= 1. 8421 + 1. 9471 = 3. 7892i.e. the rate of change of voltage whent=0.2s is
3.79volts/s, correct to 3 significant figures.Now try the following exerciseExercise 116 Further problemson
differentiating products
In Problems 1 to 8 differentiate the given products
with respect to the variable.- xsinx [xcosx+sinx]
- x^2 e^2 x [2xe^2 x(x+ 1 )]
- x^2 lnx [x( 1 +2lnx)]
- 2x^3 cos3x [6x^2 (cos 3x−xsin3x)]
5.√
x^3 ln3x[√
x(
1 +^32 ln3x)]- e^3 tsin4t [e^3 t(4cos4t+3sin4t)]
- e^4 θln3θ
[
e^4 θ(
1
θ+4ln3θ)]- etlntcost
[
et
{(
1
t+lnt)
cost−lntsint}]- Evaluate
di
dt, correct to 4 significant figures,
whent= 0 .1, andi= 15 tsin3t.
[8.732]- Evaluate
dz
dt, correct to 4 significant figures,whent= 0 .5, given thatz=2e^3 tsin2t.
[32.31]27.6 Differentiation of a quotient
Wheny=u
v,anduandvare both functions ofxthendy
dx=vdu
dx−udv
dx
v^2
This is known as thequotient rule.Problem 14. Find the differential coefficient of
y=4sin5x
5 x^44sin5x
5 x^4is a quotient. Letu=4sin5xandv= 5 x^4(Note thatvisalwaysthe denominator andu the
numerator.)dy
dx=vdu
dx−udv
dx
v^2wheredu
dx=( 4 )( 5 )cos 5x=20cos5xanddv
dx=( 5 )( 4 )x^3 = 20 x^3Hencedy
dx=( 5 x^4 )(20cos5x)−(4sin5x)( 20 x^3 )
( 5 x^4 )^2=100 x^4 cos5x− 80 x^3 sin5x
25 x^8=20 x^3 [5xcos5x−4sin5x]
25 x^8i.e.dy
dx=4
5 x^5(5xcos 5x−4sin5x)