322 Higher Engineering Mathematics
Thusd
dx(
3 y
2 x)
=( 2 x)d
dx( 3 y)−( 3 y)d
dx( 2 x)
( 2 x)^2=( 2 x)(
3
dy
dx)
−( 3 y)( 2 )4 x^2=6 xdy
dx− 6 y
4 x^2=3
2 x^2(
xdy
dx−y)Problem 5. Differentiatez=x^2 + 3 xcos3ywith
respect toy.dz
dy=d
dy(x^2 )+d
dy( 3 xcos3y)= 2 x
dx
dy+[
( 3 x)(−3sin3y)+(cos 3y)(
3
dx
dy)]= 2 xdx
dy− 9 xsin3y+3cos3ydx
dyNow try the following exerciseExercise 129 Further problems on
differentiating implicit functions involving
products and quotients- Determine
d
dx( 3 x^2 y^3 ).
[
3 xy^2(
3 xdy
dx+ 2 y)]- Find
d
dx(
2 y
5 x)
.[
2
5 x^2(
xdy
dx−y)]- Determine
d
du(
3 u
4 v)
.[
3
4 v^2(
v−udv
du)]- Givenz= 3
√
ycos3xfind
dz
dx.
[
3(
cos3x
2
√
y)
dy
dx− 9√
ysin3x]- Determine
dz
dygivenz= 2 x^3 lny.
[
2 x^2(
x
y+3lny
dx
dy)]30.4 Further implicit differentiation
An implicitfunctionsuch as 3x^2 +y^2 − 5 x+y=2, may
be differentiated term by term with respect tox.This
gives:d
dx( 3 x^2 )+d
dx(y^2 )−d
dx( 5 x)+d
dx(y)=d
dx( 2 )i.e. 6x+ 2 ydy
dx− 5 + 1dy
dx= 0 ,using equation (1) and standard derivatives.
An expression for the derivativedy
dxin terms ofxand
ymay be obtained by rearranging this latter equation.
Thus:
( 2 y+ 1 )dy
dx= 5 − 6 xfrom which,dy
dx=5 − 6 x
2 y+ 1Problem 6. Given 2y^2 − 5 x^4 − 2 − 7 y^3 =0,
determinedy
dxEach term in turn is differentiated with respect tox:Henced
dx( 2 y^2 )−d
dx( 5 x^4 )−d
dx( 2 )−d
dx( 7 y^3 )=d
dx( 0 )i.e. 4ydy
dx− 20 x^3 − 0 − 21 y^2dy
dx= 0Rearranging gives:( 4 y− 21 y^2 )dy
dx= 20 x^3i.e.dy
dx=20 x^3
(4y− 21 y^2 )Problem 7. Determine the values ofdy
dxwhen
x=4 given thatx^2 +y^2 =25.Differentiating each term in turn with respect to x
gives:d
dx(x^2 )+d
dx(y^2 )=d
dx( 25 )