324 Higher Engineering Mathematics
Whenx=2andy=3,
dy
dx=1 − 2
3 − 1=− 1
2Hence the gradients of the tangents are±1
2
The circle having the given equation has its centre at
(1, 1) and radius√
5 (see Chapter 13) and is shown in
Fig. 30.2 with the two gradients of the tangents.Gradient
521
2Gradient
51
2142 x124
3y21
220r^55x 21 y 222 x
22 y 53Figure 30.2Problem 10. Pressurepand volumevof a gas
are related by the lawpvγ=k,whereγandkare
constants. Show that the rate of change of pressure
dp
dt=−γp
vdv
dtSincepvγ=k,thenp=k
vγ=kv−γdp
dt=dp
dv×dv
dt
by the function of a function rule
dp
dv=d
dv(kv−γ)=−γkv−γ−^1 =−γk
vγ+^1
dp
dt=−γk
vγ+^1×dv
dtSincek=pvγ,
dp
dt=−γ(pvγ)
vγ+^1dv
dt=−γpvγ
vγv^1dv
dti.e.dp
dt=−γp
vdv
dtNow try the following exerciseExercise 130 Further problems on implicit
differentiationIn Problems 1 and 2 determinedy
dx- x^2 +y^2 + 4 x− 3 y+ 1 = 0
[
2 x+ 4
3 − 2 y]- 2y^3 −y+ 3 x− 2 = 0
[
3
1 − 6 y^2]- Givenx^2 +y^2 =9evaluate
dy
dxwhenx=√
5andy=2.[
−√
5
2]In Problems 4 to 7, determine
dy
dx- x^2 + 2 xsin4y= 0
[
−(x+sin4y)
4 xcos4y]- 3y^2 + 2 xy− 4 x^2 = 0
[
4 x−y
3 y+x]- 2x^2 y+ 3 x^3 =siny
[
x( 4 y+ 9 x)
cosy− 2 x^2]- 3y+ 2 xlny=y^4 +x
[
1 −2lny
3 +( 2 x/y)− 4 y^3]- If 3x^2 + 2 x^2 y^3 −
5
4y^2 =0evaluatedy
dxwhenx=1
2andy=1. [5]- Determine the gradients of the tangents
drawn to the circlex^2 +y^2 =16 at the point
wherex=2. Give the answer correct to 4
significant figures. [± 0 .5774] - Find the gradients of the tangents drawn to
the ellipsex^2
4+y^2
9=2 at the point where
x=2. [± 1 .5]- Determine the gradient of the curve
3 xy+y^2 =−2 at the point (1,−2). [−6]