328 Higher Engineering Mathematics
(iv)dy
dx=y{
3
x+1
xln2x− 1 −cotx}(v)dy
dx=x^3 ln2x
exsinx{
3
x+1
xln2x− 1 −cotx}Now try the following exerciseExercise 132 Further problems on
differentiating logarithmic functionsIn Problems 1 to 6, use logarithmic differentiation
to differentiate the given functions with respect to
the variable.- y=
(x− 2 )(x+ 1 )
(x− 1 )(x+ 3 )
⎡
⎢
⎢
⎣(x− 2 )(x+ 1 )
(x− 1 )(x+ 3 ){
1
(x− 2 )+
1
(x+ 1 )−1
(x− 1 )−1
(x+ 3 )}⎤
⎥
⎥
⎦- y=
(x+ 1 )( 2 x+ 1 )^3
(x− 3 )^2 (x+ 2 )^4
⎡
⎢
⎢
⎢
⎣(x+ 1 )( 2 x+ 1 )^3
(x− 3 )^2 (x+ 2 )^4{
1
(x+ 1 )+6
( 2 x+ 1 )−2
(x− 3 )−4
(x+ 2 )}⎤
⎥
⎥
⎥
⎦- y=
( 2 x− 1 )√
(x+ 2 )
(x− 3 )√
(x+ 1 )^3
⎡
⎢
⎢
⎢
⎣( 2 x− 1 )√
(x+ 2 )
(x− 3 )√
(x+ 1 )^3{
2
( 2 x− 1 )+1
2 (x+ 2 )−1
(x− 3 )−3
2 (x+ 1 )}⎤
⎥
⎥
⎥
⎦- y=
e^2 xcos3x
√
(x− 4 )
[
e^2 xcos3x
√
(x− 4 ){
2 −3tan3x−1
2 (x− 4 )}]- y= 3 θsinθcosθ
[
3 θsinθcosθ
{
1
θ+cotθ−tanθ}]- y=
2 x^4 tanx
e^2 xln2x[
2 x^4 tanx
e^2 xln2x{
4
x+1
sinxcosx− 2 −1
xln2x}]- Evaluate
dy
dxwhenx=1giveny=(x+ 1 )^2√
( 2 x− 1 )
√
(x+ 3 )^3[
13
16]- Evaluate
dy
dθ, correct to 3 significant figures,whenθ=π
4giveny=2eθsinθ
√
θ^5
[− 6 .71]31.5 Differentiation of[f(x)]x
Whenever an expression to be differentiated con-
tains a term raised to a power which is itself a function
of the variable, then logarithmicdifferentiation must be
used. For example, the differentiation of expressions
such asxx,(x+ 2 )x,x√
(x− 1 )andx^3 x+^2 can only be
achieved using logarithmic differentiation.Problem 5. Determinedy
dxgiveny=xx.Taking Napierian logarithms of both sides of
y=xxgives:
lny=lnxx=xlnx, by law (iii) of Section 31.2
Differentiating both sides with respect toxgives:
1
ydy
dx=(x)(
1
x)
+(lnx)( 1 ), using the product rulei.e.1
ydy
dx= 1 +lnx,from which,dy
dx=y( 1 +lnx)i.e.dy
dx=xx( 1 +lnx)Problem 6. Evaluatedy
dxwhenx=−1given
y=(x+ 2 )x.Taking Napierian logarithms of both sides of
y=(x+ 2 )xgives:lny=ln(x+ 2 )x=xln(x+ 2 ),by law (iii)
of Section 31.2