340 Higher Engineering Mathematics
(iv) press ) to close the brackets
(v) press=and 1.443635475 appears
Hence,sinh−^12 = 1. 4436 , correct to 4 decimal places.Problem 10. Show thattanh−^1x
a=1
2ln(
a+x
a−x)
and evaluate, correctto 4 decimal places, tanh−^13
5Ify=tanh−^1x
athenx
a=tanhy.From Chapter 5,tanhy=sinhx
coshx
=1
2 (ey−e−y)
1
2 (e
y+e−y)=e^2 y− 1
e^2 y+ 1by dividing each term by e−yThus,x
a=e^2 y− 1
e^2 y+ 1
from which, x(e^2 y+ 1 )=a(e^2 y− 1 )Hencex+a=ae^2 y−xe^2 y=e^2 y(a−x)from which e^2 y=(
a+x
a−x)Taking Napierian logarithms of both sides gives:2 y=ln(
a+x
a−x)and y=1
2ln(
a+x
a−x)Hence,tanh−^1x
a=1
2ln(
a+x
a−x)Substitutingx=3anda=5gives:tanh−^13
5=1
2ln(
5 + 3
5 − 3)
=1
2ln4=0.6931,correct to 4 decimal places.Problem 11. Prove thatcosh−^1x
a=ln{
x+√
x^2 −a^2
a}and hence evaluate cosh−^1 1.4 correct to
4 decimal places.Ify=cosh−^1x
athenx
a=cosyey=coshy+sinhy=coshy±√
cosh^2 y− 1=x
a±√[
(x
a) 2
− 1]
=x
a±√
x^2 −a^2
a=x±√
x^2 −a^2
a
Taking Napierian logarithms of both sides gives:y=ln{
x±√
x^2 −a^2
a}Thus, assuming the principal value,cosh−^1x
a=ln{
x+√
x^2 −a^2
a}cosh−^11. 4 =cosh−^114
10=cosh−^17
5
In the equation for cosh−^1x
a,letx=7anda= 5Then cosh−^17
5=ln{
7 +√
72 − 52
5}=ln2. 3798 =0.8670,
correct to 4 decimal places.Now try the following exerciseExercise 136 Further problems on
logarithmic forms of the inverse hyperbolic
functions
In Problems 1 to 3 use logarithmic equivalents of
inverse hyperbolic functions to evaluate correct to
4 decimal places.- (a) sinh−^1
1
2(b) sinh−^1 4(c)sinh−^1 0.9[(a) 0.4812 (b) 2.0947 (c) 0.8089]- (a) cosh−^1
5
4(b) cosh−^1 3 (c) cosh−^1 4.3[(a) 0.6931 (b) 1.7627 (c) 2.1380]- (a) tanh−^1
1
4(b) tanh−^15
8(c) tanh−^1 0.7
[(a) 0.2554 (b) 0.7332 (c) 0.8673]