Partial fractions 17
Equating thexterm coefficients gives:
− 2 ≡− 2 A+ 2 B+CWhenA=2,B=3andC=−4then
− 2 A+ 2 B+C=− 2 ( 2 )+ 2 ( 3 )− 4
=− 2 =LHSEquating the constant term gives:
− 19 ≡A− 3 B+ 3 CRHS= 2 − 3 ( 3 )+ 3 (− 4 )= 2 − 9 − 12
=− 19 =LHS]Hence
5 x^2 − 2 x− 19
(x+3)(x−1)^2≡2
(x+3)+3
(x−1)−4
(x−1)^2Problem 7. Resolve3 x^2 + 16 x+ 15
(x+ 3 )^3into partial
fractions.Let
3 x^2 + 16 x+ 15
(x+ 3 )^3≡A
(x+ 3 )+B
(x+ 3 )^2+C
(x+ 3 )^3≡A(x+ 3 )^2 +B(x+ 3 )+C
(x+ 3 )^3Equating the numerators gives:
3 x^2 + 16 x+ 15 ≡A(x+ 3 )^2 +B(x+ 3 )+C (1)Letx=−3. Then
3 (− 3 )^2 + 16 (− 3 )+ 15 ≡A( 0 )^2 +B( 0 )+Ci.e. − 6 =C
Identity (1) may be expanded as:
3 x^2 + 16 x+ 15 ≡A(x^2 + 6 x+ 9 )
+B(x+ 3 )+Ci.e. 3 x^2 + 16 x+ 15 ≡Ax^2 + 6 Ax+ 9 A
+Bx+ 3 B+CEquating the coefficients ofx^2 terms gives: 3 =A
Equating the coefficients ofxterms gives:16 = 6 A+B
SinceA= 3 ,B=− 2[Check: equating the constant terms gives:
15 = 9 A+ 3 B+C
WhenA=3,B=−2andC=−6,9 A+ 3 B+C= 9 ( 3 )+ 3 (− 2 )+(− 6 )= 27 − 6 − 6 = 15 =LHS]Thus3 x^2 + 16 x+ 15
(x+ 3 )^3≡3
(x+ 3 )−2
(x+ 3 )^2−6
(x+ 3 )^3Now try the following exerciseExercise 9 Further problemson partial
fractions with linear factors1.4 x− 3
(x+ 1 )^2[
4
(x+ 1 )−7
(x+ 1 )^2]2.x^2 + 7 x+ 3
x^2 (x+ 3 )[
1
x^2+2
x−1
(x+ 3 )]3.5 x^2 − 30 x+ 44
(x− 2 )^3
[
5
(x− 2 )−10
(x− 2 )^2+4
(x− 2 )^3]4.18 + 21 x−x^2
(x− 5 )(x+ 2 )^2
[
2
(x− 5 )−3
(x+ 2 )+4
(x+ 2 )^2]2.4 Worked problems on partial
fractions with quadratic factors
Problem 8. Express7 x^2 + 5 x+ 13
(x^2 + 2 )(x+ 1 )in partial
fractions.